Hybrid complexes of fluorescent nanoparticles and tetrapyrrole dyes are currently considered as promising third-generation photosensitizers for photodynamic therapy, including cancer treatment. Using nanoparticles as a platform for delivery of photosensitizers to target cells can increase the efficiency of photodynamic action. In this work, we synthesized a complex of polymer-coated CdSe/ZnS quantum dots, substituted phthalocyanines and human transferrin. Such complexes effectively enter human epidermoid carcinoma cells (A431) due to transferrin-mediated endocytosis and are localized in the perinuclear compartment. We observed an efficient excitation energy transfer from the quantum dot to phthalocyanine in the cells, which indicates stability of the complex upon its internalization. It was shown that the photodynamic activity of hybrid complexes covalently bonded to transferrin is 15% higher than the activity of unmodified hybrid complexes. Our results confirm the feasibility of using fluorescent nanoparticles to enhance the photodynamic properties of photosensitizers based on tetrapyrrole dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2019.108192DOI Listing

Publication Analysis

Top Keywords

hybrid complexes
12
fluorescent nanoparticles
8
tetrapyrrole dyes
8
photodynamic
5
modification transferrin
4
transferrin increases
4
increases efficiency
4
efficiency delivery
4
delivery photodynamic
4
photodynamic quantum
4

Similar Publications

High-Performance TiCT-MXene/Mycelium Hybrid Membrane for Efficient Lead Remediation: Design and Mechanistic Insights.

ACS Appl Mater Interfaces

January 2025

Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.

This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.

View Article and Find Full Text PDF

Objective: To explore the prevalence and risk factors of carotid artery (CA) stenosis among subclavian steal syndrome (SSS) patients and to record their prognoses.

Methods: This observational study was retrospective. From January 2015 to October 2022, 169 patients were diagnosed with SSS.

View Article and Find Full Text PDF

The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex, progressive, and irreversible neurodegenerative disorder marked by cognitive decline and memory loss. Early diagnosis is the most effective strategy to slow the disease's progression. Mild Cognitive Impairment (MCI) is frequently viewed as a crucial stage before the onset of AD, making it the ideal period for therapeutic intervention.

View Article and Find Full Text PDF

Neoadjuvant chemotherapy (NAC) is a systemic and systematic chemotherapy regimen for breast cancer patients before surgery. However, NAC is not effective for everyone, and the process is excruciating. Therefore, accurate early prediction of the efficacy of NAC is essential for the clinical diagnosis and treatment of patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!