The genetic basis of oral health has long been theorized, but little information exists on the heritable variance in common oral and dental disease traits explained by the human genome. We sought to add to the evidence base of heritability of oral and dental traits using high-density genotype data in a well-characterized community-based cohort of middle-age adults. We used genome-wide association (GWAS) data combined with clinical and biomarker information in the Dental Atherosclerosis Risk In Communities (ARIC) cohort. Genotypes comprised SNPs directly typed on the Affymetrix Genome-Wide Human SNP Array 6.0 chip with minor allele frequency of >5% (n = 656,292) or were imputed using HapMap II-CEU (n = 2,104,905). We investigated 30 traits including "global" [e.g., number of natural teeth (NT) and incident tooth loss], clinically defined (e.g., dental caries via the DMFS index, periodontitis via the CDC/AAP and WW17 classifications), and biologically informed (e.g., subgingival pathogen colonization and "complex" traits). Heritability (i.e., variance explained; h) was calculated using Visscher's Genome-wide Complex Trait Analysis (GCTA), using a random-effects mixed linear model and restricted maximum likelihood (REML) regression adjusting for ancestry (10 principal components), age, and sex. Heritability estimates were modest for clinical traits-NT = 0.11 (se = 0.07), severe chronic periodontitis (CDC/AAP) = 0.22 (se = 0.19), WW17 Stage 4 vs. 1/2 = 0.15 (se = 0.11). "High gingival index" and "high red complex colonization" had h > 0.50, while a periodontal complex trait defined by high IL-1β GCF expression and Aggregatibacter actinomycetemcomitans subgingival colonization had the highest h = 0.72 (se = 0.32). Our results indicate that all GWAS SNPs explain modest levels of the observed variance in clinical oral and dental measures. Subgingival bacterial colonization and complex phenotypes encompassing both bacterial colonization and local inflammatory response had the highest heritability, suggesting that these biologically informed traits capture aspects of the disease process and are promising targets for genomics investigations, according to the notion of precision oral health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328987PMC
http://dx.doi.org/10.1007/978-3-030-28524-1_13DOI Listing

Publication Analysis

Top Keywords

oral dental
16
biologically informed
12
informed traits
8
clinically defined
8
oral health
8
complex trait
8
bacterial colonization
8
traits
6
oral
6
dental
6

Similar Publications

Background: The rapid growth of aesthetic medicine has led to an increased demand for non-surgical cosmetic procedures in the frontal region of the face. However, alongside this rise in popularity, there is a growing awareness of the potential complications associated with these procedures especially connected with fillers. The intricate vascular anatomy of the forehead, specifically the supratrochlear (STA) and supraorbital (SOA) arteries, poses significant risks if not thoroughly understood.

View Article and Find Full Text PDF

Background: Soft tissue specifications and facial values ​​vary depending on the underlying skeletal structures. To achieve the ideal treatment result and patient satisfaction, one must know the attractive soft tissue specifications compatible with each type of malocclusion. This study aims to analyze the facial measurements that contribute to perceived facial attractiveness in patients with vertical growth patterns and skeletal class I malocclusion, focusing on gender-specific differences.

View Article and Find Full Text PDF

Background Fracture of nickel-titanium (Ni-Ti) instruments in root canals is commonly associated with compromised outcomes in endodontic treatment. There is no single, universally accepted approach for managing this complication. The objective of this study is to evaluate the effectiveness of an Nd: YAP laser-assisted protocol in removing fractured Ni-Ti files in teeth with minimal root curvature (less than 15 degrees).

View Article and Find Full Text PDF

Introduction: To evaluate the enamel abrasion effects of soft, ultra-soft, and nano-bristle toothbrushes using atomic force microscopy (AFM) to guide toothbrush selection for optimal enamel preservation.

Methods: This in vitro study involved 45 extracted human teeth (central and lateral incisors), randomly assigned to three groups (n=15 each): Group I (nano-bristle), Group II (ultra-soft bristle), and Group III (soft bristle). Each specimen underwent 10,000 brushing cycles with a standardized 2 N force to simulate one year of brushing.

View Article and Find Full Text PDF

A 10.2-year-old girl, accompanied by her parents, came to the Department of Jaw Orthopedics at the Clinic for Dental Medicine. Based on the initial orthopantomography, multiple tooth impactions were diagnosed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!