Global warming due to increasing temperature and contamination in aquatic environment has been found to be inducing cellular metabolic stress in fish. The present study focused on temperature and contamination in aquatic ecosystems and its alleviation/mitigation. Hence, this study was conducted to evaluate the role of zinc to improve growth performance, cellular metabolic stress, and digestive enzymes of the Pangasianodon hypophthalmus reared under lead (Pb) and high temperature. Two hundred and seventy-three fishes were distributed randomly into seven treatments, each with three replicates. Three isocaloric and isonitrogenous diets with graded levels of zinc at 0 mg/kg, 10 mg/kg, and 20 mg/kg were prepared. The Pb in treated water was maintained at the level of 1/21th of LC (4 ppm) and maintained at a temperature of 34 °C in exposure groups. The growth performance in terms of weight gain (%), protein efficiency ratio (PER), and specific growth rate (SGR) was found to be inhibited, and the feed conversion ratio (FCR) was enhanced in the Pb and high temperature-exposed group, whereas zinc supplementation has improved weight gain (%), FCR, PER, and SGR. The liver, gill, muscle, and kidney tissues of carbohydrate metabolic enzymes (LDH and MDH), protein metabolic enzymes (ALT and AST), and liver, gill, and muscle G6PDH and ATPase as well as intestinal digestives enzymes (proteases, amylase, and lipase) and intestinal ALP were significantly affected (p < 0.01) by Pb and high temperature exposure to P. hypophthalmus. We herein report the role of zinc in mitigating cellular metabolic stress in fish exposed to Pb and high temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-019-00719-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!