In eukaryotes, autophagy maintains cellular homeostasis by recycling cytoplasmic components. The autophagy-related proteins (ATGs) ATG1 and ATG13 form a protein kinase complex that regulates autophagosome formation; however, mechanisms regulating ATG1 and ATG13 remain poorly understood. Here, we show that, under different nutrient conditions, the RING-type E3 ligases SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA1 (SINAT1), SINAT2, and SINAT6 control ATG1 and ATG13 stability and autophagy dynamics by modulating ATG13 ubiquitylation in Arabidopsis (). During prolonged starvation and recovery, ATG1 and ATG13 were degraded through the 26S proteasome pathway. TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR1a (TRAF1a) and TRAF1b interacted in planta with ATG13a and ATG13b and required SINAT1 and SINAT2 to ubiquitylate and degrade ATG13s in vivo. Moreover, lysines K607 and K609 of ATG13a protein contributed to K48-linked ubiquitylation and destabilization, and suppression of autophagy. Under starvation conditions, SINAT6 competitively interacted with ATG13 and induced autophagosome biogenesis. Furthermore, under starvation conditions, ATG1 promoted TRAF1a protein stability in vivo, suggesting feedback regulation of autophagy. Consistent with ATGs functioning in autophagy, the triple knockout mutants exhibited premature leaf senescence, hypersensitivity to nutrient starvation, and reduction in TRAF1a stability. Therefore, these findings demonstrate that SINAT family proteins facilitate ATG13 ubiquitylation and stability and thus regulate autophagy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961628 | PMC |
http://dx.doi.org/10.1105/tpc.19.00413 | DOI Listing |
Nat Commun
December 2024
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana.
View Article and Find Full Text PDFVet Med Sci
September 2024
College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China.
Front Cell Infect Microbiol
February 2024
Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
Isobavachalcone (IBC) is a natural flavonoid with multiple pharmacological properties. This study aimed to evaluate the efficacy of IBC against planktonic growth and biofilms of () and the mechanisms underlying its antifungal action. The cell membrane integrity, cell metabolic viability, and cell morphology of treated with IBC were evaluated using CLSM and FESEM analyses.
View Article and Find Full Text PDFNat Cell Biol
March 2024
Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany.
Cells convert complex metabolic information into stress-adapted autophagy responses. Canonically, multilayered protein kinase networks converge on the conserved Atg1/ULK kinase complex (AKC) to induce non-selective and selective forms of autophagy in response to metabolic changes. Here we show that, upon phosphate starvation, the metabolite sensor Pho81 interacts with the adaptor subunit Atg11 at the AKC via an Atg11/FIP200 interaction motif to modulate pexophagy by virtue of its conserved phospho-metabolite sensing SPX domain.
View Article and Find Full Text PDFEMBO Rep
February 2024
Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
Autophagy is initiated by the assembly of multiple autophagy-related proteins that form the phagophore assembly site where autophagosomes are formed. Atg13 is essential early in this process, and a hub of extensive phosphorylation. How these multiple phosphorylations contribute to autophagy initiation, however, is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!