Plastic pollution represents a global concern for the biodiversity conservation, ecosystem and public health. The polystyrene is one of the dominant pollutants in both terrestrial and aquatic ecosystem. This work measured the hazardous nature of 100 nm micropolystyrene (MPS) using 25, 50, 100, 200, and 400 mg/L concentrations in terms of oxidative stress, morphotoxicity and cytogenotoxicity in Allium cepa. The results were compared with the positive control (PC) (400 mg/L chlorpyrifos). MPS significantly (p < 0.05) reduced the root length while induced the production of hydroxyl, superoxide radicals with a concomitant increase in DPPH scavenging activity and lipid peroxidation as compared to the negative control. The significant decrease in mitotic index with respect to the negative control (MI: 23.855 ± 5.336 %; lowest MI: 3.88 ± 1.042 %) showed the cytotoxic nature of MPS. Genotoxicity was assessed by various chromosomal and nuclear aberrations. The highest 3.029 ± 0.403 % (PC: 3.09 ± 0.535 %) chromosomal abnormality index and 2.31 ± 0.338 % (PC: 1.178 ± 0.095 %) nuclear abnormality index were observed. MPS down-regulated the expression of plant CDKA encoding gene: cdc2, an important cell cycle regulator. The overall results indicated that MPS could induce cytogenotoxicity through the exacerbation of ROS production and inhibition of cdc2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.121560DOI Listing

Publication Analysis

Top Keywords

allium cepa
8
cytogenotoxic potential
4
potential hazardous
4
hazardous material
4
material polystyrene
4
polystyrene microparticles
4
microparticles allium
4
cepa plastic
4
plastic pollution
4
pollution represents
4

Similar Publications

The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).

View Article and Find Full Text PDF

Background: Bile acids (BA) are steroids regulating nutrient absorption, energy metabolism, and mitochondrial function, and serve as important signaling molecules with a role in the gut-brain axis. The composition of BAs in humans changes with diet type and health status, which is well documented with a few known bile acids. In this study, we leveraged a new BA-specific spectral library curated in the Dorrestein lab at UCSD to expand the pool of detected BAs in Alzheimer-related LC-MS/MS datasets and provide links to dietary profiles and AD markers.

View Article and Find Full Text PDF

Tetragonula iridipennis Smith, commonly known as the stingless bee or 'dammer bee', is a key native species that pollinates a wide variety of horticultural crops, including onions, in India. Climate change significantly affects species distribution and habitat suitability. This study utilized Maximum Entropy Modeling (MaxEnt) to predict the current and future distribution of T.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the harmful effects of the pesticide etoxazole on the plant Allium cepa (onion) and explores the protective role of Achillea millefolium (yarrow) extract against this toxicity.
  • The research showed that etoxazole exposure significantly reduced growth metrics (like rooting percentage and root length) and increased harmful cellular changes, including chromosomal abnormalities.
  • Molecular docking results indicated that etoxazole directly interacts with DNA and key proteins, while A. millefolium extract, rich in phenolic compounds, may mitigate some of the toxic effects caused by the pesticide.
View Article and Find Full Text PDF

Onion and garlic are economically important vegetable crops cultivated worldwide. Numerous pests and diseases affect the quality and yield of these crops. In addition to diseases and pests, several physiological disorders affect onion and garlic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!