Purpose: Abnormal DNA methylation plays an important role in clinical diagnosis and prognosis of various tumors. DNA methylation is catalyzed by DNA methyltransferase (DNMT). However, the methylation status of MAGE-A1 and MAGE-A3 promoter regions in LSCC is unclear. To investigate the methylation levels of MAGE-A1, -A3 in LSCC and corresponding normal tissues. The expression of DNMTs (DNMT1, DNMT3a and DNMT3b) in LSCC and the relationship between the methylation status of MAGE-A1, -A3 were analyzed.
Materials And Methods: We examined methylation status of MAGE-A1, -A3 in LSCC by using MSP. Meanwhile, the expression level of DNMTs in LSCC was detected by immunohistochemistry. And further analysis the correlation between DNMTs expression level and methylation status of MAGE-A1 and MAGE-A3.
Results: The unmethylation rate of MAGE-A1, -A3 were 39.62% and 46.23%. The expression of DNMTs was 33.02% to 37.74%. The level of demethylation of MAGE-A1 and MAGE-A3 were negative related to DNMTs protein. MAGE-A1 and MAGE-A3 unmethylation status and DNMT3a expression were independent prognostic factors for LSCC.
Conclusions: The DNMTs may participate in the methylation process of MAGE-A1 and MAGE-A3, which may play an important role in the occurrence and development of LSCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.amjoto.2019.102318 | DOI Listing |
Theriogenology
January 2025
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
Cryopreservation of rooster semen is a reproductive technology carried out to boost genetic gain and productivity in commercial flocks of chicken. However, semen freezing significantly reduces the quality and fertilizing potential of spermatozoa. This study examined cryoprotective effects of the mitochondria-targeted antioxidant mitoquinol mesylate added to the freezing extender by assessing post-thaw characteristics of rooster sperm.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, China.
Background: N6-methyladenosine (mA)-mediated epitranscriptomic pathway has been shown to contribute to chemoresistance and radioresistance. Our previous work confirmed the defense of lycorine against tamoxifen resistance of breast cancer (BC) through targeting HOXD antisense growth-associated long non-coding RNA (HAGLR). Whereas, the precise regulation among them remains to be elucidated.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Radiation Oncology, The Second Hospital of Lanzhou University, Lanzhou, China.
Background: Within the realm of primary brain tumors, specifically glioblastoma (GBM), presents a notable obstacle due to their unfavorable prognosis and differing median survival rates contingent upon tumor grade and subtype. Despite a plethora of research connecting cardiotrophin-1 (CTF1) modifications to a range of illnesses, its correlation with glioma remains uncertain. This study investigated the clinical value of CTF1 in glioma and its potential as a biomarker of the disease.
View Article and Find Full Text PDFJ Trace Elem Med Biol
January 2025
Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, PR China. Electronic address:
Background: Conflicting findings exist regarding the association between maternal serum zinc and neonatal birth weight. This study aimed to explore the association between maternal serum zinc and birth weight, and whether this association was modified by neonatal SOD2 polymorphism and promoter methylation.
Methods: We recruited 464 mother-newborn pairs at Houzhai Center Hospital from January 2010 to January 2012.
Biomed Pharmacother
January 2025
Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China. Electronic address:
The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!