Preventing Transmission of Mycobacterium Tuberculosis-A Refocused Approach.

Clin Chest Med

Division of Global Health Equity, Harvard Medical School, Brigham & Women's Hospital, 75 Francis Street, Boston, MA 02115, USA. Electronic address:

Published: December 2019

AI Article Synopsis

  • Traditional TB infection control typically centers on treating known TB patients, but a new approach emphasizes detecting untreated cases through methods like active case finding and rapid diagnostics.
  • The FAST strategy highlights the importance of identifying untreated TB patients to enhance control efforts.
  • Natural ventilation and germicidal ultraviolet technology are key methods for air disinfection, especially vital in resource-limited areas, while targeted testing and treatment of latent TB infection is essential for preventing reactivation.

Article Abstract

Traditional tuberculosis (TB) infection control focuses on the known patient with TB, usually on appropriate treatment. A refocused, intensified TB infection control approach is presented. Combined with active case finding and rapid molecular diagnostics, an approach called FAST is described as a convenient way to call attention to the untreated patient. Natural ventilation is the mainstay of air disinfection in much of the world. Germicidal ultraviolet technology is the most sustainable approach to air disinfection under resource-limited conditions. Testing and treatment of latent TB infection works to prevent reactivation but requires greater risk targeting in both low- and high-risk settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccm.2019.07.010DOI Listing

Publication Analysis

Top Keywords

infection control
8
air disinfection
8
preventing transmission
4
transmission mycobacterium
4
mycobacterium tuberculosis-a
4
tuberculosis-a refocused
4
approach
4
refocused approach
4
approach traditional
4
traditional tuberculosis
4

Similar Publications

Enhancing farmer awareness: Vertical transmission of Neospora caninum in aborting cattle and the value of diagnostics tools.

Vet Parasitol

January 2025

Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern 3012, Switzerland. Electronic address:

The protozoan parasite Neospora caninum is an important cause of abortion in cattle. Infection occurs horizontally by ingestion of oocysts shed by canids or vertically, from an infected dam to the foetus, and may result in abortion, stillbirth, or the birth of subclinically infected offspring. We estimated the occurrence of N.

View Article and Find Full Text PDF

The concept of Debridement, Antibiotics and Implant Retention (DAIR) is well known in periprosthetic joint infections. Extrapolating this concept to fracture related infections is mired in controversies. Characteristics of the metal implant, duration of infection, state of fracture healing, microbiological profile etc.

View Article and Find Full Text PDF

Background: Numerous studies have assessed the risk of SARS-CoV-2 exposure and infection among health care workers during the pandemic. However, far fewer studies have investigated the impact of SARS-CoV-2 on essential workers in other sectors. Moreover, guidance for maintaining a safely operating workplace in sectors outside of health care remains limited.

View Article and Find Full Text PDF

Metabolomic and proteomic changes in leaves of rubber seedlings infected by Phytophthora palmivora.

Tree Physiol

January 2025

Special Research Incubator Unit of Fermentomics, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.

Phytophthora palmivora, an oomycete pathogen, induces leaf fall disease in rubber trees (Hevea brasiliensis), causing significant economic losses. Effective disease management requires an understanding metabolic dynamics during infection. This study employed untargeted metabolomic and proteomic analyses to investigate the response of rubber seedling leaves to P.

View Article and Find Full Text PDF

A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection.

PLoS Pathog

January 2025

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!