Using electron spectroscopy, we investigated the nanoplasma formation process generated in xenon clusters by intense soft x-ray free electron laser (FEL) pulses. We found clear FEL intensity dependence of electron spectra. Multistep ionization and subsequent ionization frustration features are evident for the low FEL-intensity region, and the thermal electron emission emerges at the high FEL intensity. The present FEL intensity dependence of the electron spectra is well addressed by the frustration parameter introduced by Arbeiter and Fennel [New J. Phys. 13, 053022 (2011)].

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5115053DOI Listing

Publication Analysis

Top Keywords

fel intensity
12
nanoplasma formation
8
intense soft
8
soft x-ray
8
intensity dependence
8
dependence electron
8
electron spectra
8
electron
6
electron spectroscopic
4
spectroscopic study
4

Similar Publications

Tailored light-matter interactions in the strong coupling regime enable the manipulation and control of quantum systems with up to unit efficiency, with applications ranging from quantum information to photochemistry. Although strong light-matter interactions are readily induced at the valence electron level using long-wavelength radiation, comparable phenomena have been only recently observed with short wavelengths, accessing highly excited multi-electron and inner-shell electron states. However, the quantum control of strong-field processes at short wavelengths has not been possible, so far, because of the lack of pulse-shaping technologies in the extreme ultraviolet (XUV) and X-ray domain.

View Article and Find Full Text PDF

Conditional guided generative diffusion for particle accelerator beam diagnostics.

Sci Rep

August 2024

Applied Electrodynamics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Advanced accelerator-based light sources such as free electron lasers (FEL) accelerate highly relativistic electron beams to generate incredibly short (10s of femtoseconds) coherent flashes of light for dynamic imaging, whose brightness exceeds that of traditional synchrotron-based light sources by orders of magnitude. FEL operation requires precise control of the shape and energy of the extremely short electron bunches whose characteristics directly translate into the properties of the produced light. Control of short intense beams is difficult due to beam characteristics drifting with time and complex collective effects such as space charge and coherent synchrotron radiation.

View Article and Find Full Text PDF

Extreme ultraviolet (EUV) photon beam characterization techniques, Hartmann wavefront sensing and single shot ablation imprinting, were compared along the caustic of a tightly focused free-electron laser (FEL) beam at beamline FL24 of FLASH2, the Free-electron LASer in Hamburg at DESY. The transverse coherence of the EUV FEL was determined by a Young's double pinhole experiment and used in a back-propagation algorithm which includes partial coherence to calculate the beam intensity profiles along the caustic from the wavefront measurements. A very good agreement of the profile structure and size is observed for different wavelengths between the back-propagated profiles, an indirect technique, and ablation imprints.

View Article and Find Full Text PDF
Article Synopsis
  • - A novel method for time-resolved X-ray absorption near edge structure (XANES) spectroscopy is introduced, allowing for quicker data collection and smaller sample sizes, which improves the efficiency of analyzing numerous samples.
  • - This technique utilizes large bandwidth free electron laser pulses to gather laser-excited XANES spectra in transmission mode, employing a special beam-splitting configuration for simultaneous measurements.
  • - Testing on a liquid solution of ammonium iron(III) oxalate demonstrates significant advancements in speed and spectral resolution, enabling rapid creation of extensive 2-D spectral-time maps compared to older methods.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates third harmonic generation (THG) in InSb semiconductors using a terahertz free electron laser (FEL), observing a conversion from 4 THz to 12 THz.
  • By adjusting the sample temperature to 360 K, researchers achieved a high conversion efficiency of up to 1%, noted as the highest in the THz and FIR regions below 10 THz.
  • The paper also addresses how the intensity of the pump affects THG, indicating that at high pumping intensities, the nonlinear order observed is less than 3.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!