Pressure densified 1,3,5-tri(1-naphthyl)benzene glass. I. Volume recovery and physical aging.

J Chem Phys

Naval Research Laboratory, Chemistry Division, Washington, DC 20375-5342, USA.

Published: November 2019

The effects of pressure densification on 1,3,5-tri(1-naphthyl)benzene (TNB) are assessed from volumetric and calorimetric measurements. The pressure densified glass (PDG) has higher density than conventional glass (CG), but unlike ultrastable TNB glass prepared using vapor deposition which also has elevated density, TNB PDG exhibits higher enthalpy and lower thermal stability than when formed at ambient pressure. PDG also exhibits anomalous physical aging. Rather than evolving monotonically toward the equilibrium density, there is an overshoot to a lower density state. Only when the density of the PDG becomes equivalent to the corresponding CG does the density begin a slow approach toward equilibrium.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5122765DOI Listing

Publication Analysis

Top Keywords

pressure densified
8
physical aging
8
pdg exhibits
8
density
6
pressure
4
densified 135-tri1-naphthylbenzene
4
glass
4
135-tri1-naphthylbenzene glass
4
glass volume
4
volume recovery
4

Similar Publications

Hydroxyapatite/zirconia (HAP/ZrO) composites were fabricated via the low-temperature mineralization sintering process (LMSP) at an extremely low temperature of 130 °C to enhance the mechanical properties of HAP and broaden its practical applications. For this purpose, 5-20 vol% calcia-stabilized ZrO were introduced into HAP, and HAP/ZrO nanoparticles, mixed with simulated body fluid, were densified under a uniaxial pressure of 800 MPa at 130 °C. At 10 vol% ZrO, the relative density of the HAP/ZrO composite was determined to be 88.

View Article and Find Full Text PDF

Tight sandstone gas reservoirs are characterized by high water saturation, significant seepage resistance, low single-well productivity, rapid decline, and low gas recovery. Enhancing the recovery rate of tight sandstone gas reservoirs is a complex engineering challenge that necessitates thorough, refined, and systematic research into its fundamental theories. This study employs a comprehensive approach integrating mercury injection, nuclear magnetic resonance, micro-model visualization, and simulation experiments of displacement and inter-layer seepage flow, alongside foundational seepage theories, to systematically explore the characteristics of tight sandstone gas reservoirs, seepage patterns, and methods for improving gas recovery.

View Article and Find Full Text PDF

Surface Hydrophilic Modification of Polypropylene by Nanosecond Pulsed Ar/O Dielectric Barrier Discharge.

Materials (Basel)

December 2024

College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China.

Polypropylene (PP) membranes have found diverse applications, such as in wastewater treatment, lithium-ion batteries, and pharmaceuticals, due to their low cost, excellent mechanical properties, thermal stability, and chemical resistance. However, the intrinsic hydrophobicity of PP materials leads to membrane fouling and filtration flux reduction, which greatly hinders the applications of PP membranes. Dielectric barrier discharge (DBD) is an effective technique for surface modification of materials because it generates a large area of low-temperature plasma at atmospheric pressure.

View Article and Find Full Text PDF

We report the pressure-temperature (-) phase diagram, the origin of the subglass dynamics, and the crystallization kinetics of the biobased polyester poly(ethylene 2,5-furanoate) (PEF), through dielectric spectroscopy (DS) measurements performed as a function of temperature and pressure. The phase diagram comprises four different "phases"; glass, quenched melt, crystalline, and normal melt. The cold crystallization temperature, , increases linearly with pressure (according to the Clausius-Clapeyron equation) as / ∼ 240 K·GPa and is accompanied by a small change in specific volume (Δ = 0.

View Article and Find Full Text PDF

The effect of hot isostatic pressing (HIP) on the thermoelectric power factor of zinc oxide (ZnO) has been examined. ZnO is expected to be a potential n-type oxide thermoelectric material that could enhance the thermoelectric conversion efficiency. The HIP treatment is useful for densifying the material and controlling crystal defects in the material by applying high temperatures and pressures simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!