Diabetic foot ulcers (DFUs) are the fastest growing chronic complication of diabetes mellitus, with more than 400 million people diagnosed globally, and the condition is responsible for lower extremity amputation in 85% of people affected, leading to high-cost hospital care and increased mortality risk. Neuropathy and peripheral arterial disease trigger deformities or trauma, and aggravating factors such as infection and edema are the etiological factors for the development of DFUs. DFUs require identifying the etiology and assessing the co-morbidities to provide the correct therapeutic approach, essential to reducing lower-extremity amputation risk. This review focuses on the current treatment strategies for DFUs with a special emphasis on tissue engineering techniques and regenerative medicine that collectively target all components of chronic wound pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915664 | PMC |
http://dx.doi.org/10.3390/medicina55110714 | DOI Listing |
BMJ Open
December 2024
Department of Vascular Surgery, Leids Universitair Medisch Centrum, Leiden, The Netherlands.
Introduction: Foot ulcers are one of the most serious complications of diabetes, leading to significant risks on amputation and mortality. Peripheral arterial disease (PAD) is an important factor for the development and the outcome of diabetic foot ulcers (DFU). Although prompt and accurate detection of PAD is critical to reduce complications, its diagnosis can be challenging with currently used bedside tests (such as ankle-brachial index and toe pressure) due to medial arterial calcification.
View Article and Find Full Text PDFClin Teach
February 2025
Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
Purpose: The development of the Diabetic Wound Assessment Learning Tool (DiWALT) has previously been described. However, an examination of its application to a larger, more heterogeneous group of participants is lacking. In order to allow for a more robust assessment of the psychometric properties of the DiWALT, we applied it to a broader group of participants.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
The treatment of diabetic foot ulcers (DFUs) represents a significant challenge due to the complexity of the wound microenvironment. Several factors, including infection, inflammation, and impaired angiogenesis, can complicate the healing process and reduce the effectiveness of current clinical treatments. To address these challenges, this work develops a multifunctional sponge containing a zeolitic imidazolate framework-8/bacterial cellulose (ZIF-8/BC) matrix loaded with the antioxidant naringin (Nar).
View Article and Find Full Text PDFActa Dermatovenerol Croat
November 2024
Khalid Al Aboud King Faisal Hospital P.O Box 5440, Makkah, Saudi Arabia;
parts of the world (1,2). CL is characterized by significant clinical variability. An ulcerated nodule on the exposed parts of the body (corresponding to the parasite inoculation site by the vector insect) is the classic presentation.
View Article and Find Full Text PDFCureus
December 2024
General Surgery, Father Muller Medical College, Mangalore, IND.
Background Wound healing in diabetic foot ulcers (DFUs) is hindered by several physiological and biochemical abnormalities, including prolonged inflammation, an imbalance in extracellular matrix (ECM) synthesis and degradation, insufficient neovascularization, and reduced macrophage activity. In DFUs, excessive and uncontrolled matrix metalloproteinases (MMPs) degrade the ECM and impede wound healing. Matrix metalloproteinase-9 (MMP-9) concentration plays a key role in inflammation and ECM degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!