Fuzzy Gaussian Lasso clustering with application to cancer data.

Math Biosci Eng

Department of Applied Mathematics, Chung Yuan Christian University, Chung-Li 32023, Taiwan.

Published: September 2019

Recently, Yang et al. (2019) proposed a fuzzy model-based Gaussian (F-MB-Gauss) clustering that combines a model-based Gaussian with fuzzy membership functions for clustering. In this paper, we further consider the F-MB-Gauss clustering with the least absolute shrinkage and selection operator (Lasso) for feature (variable) selection, termed a fuzzy Gaussian Lasso (FG-Lasso) clustering algorithm. We demonstrate that the proposed FG-Lasso is a good clustering algorithm with better choice for feature subset selection. Experimental results and comparisons actually present these good aspects of the proposed FG-Lasso clustering algorithm. Cancer is a disease with growth of abnormal cells in a body. WHO reported that it is the first or second main leading cause of death. It spreads and affects the other parts of body if there is not properly diagnosed. In the paper, we apply the proposed FG-Lasso to cancer data with good feature selection and clustering results.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2020014DOI Listing

Publication Analysis

Top Keywords

clustering algorithm
12
proposed fg-lasso
12
fuzzy gaussian
8
gaussian lasso
8
clustering
8
cancer data
8
model-based gaussian
8
f-mb-gauss clustering
8
fg-lasso clustering
8
fuzzy
4

Similar Publications

Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.

View Article and Find Full Text PDF

Prostate cancer (PCa) is one of the most common cancers in men worldwide. Autophagy-related genes (ARGs) may play an important role in various biological processes of PCa. The aim of this study was to identify and evaluate autophagy-related features to predict clinical outcomes in patients with PCa.

View Article and Find Full Text PDF

Human tumors are diverse in their natural history and response to treatment, which in part results from genetic and transcriptomic heterogeneity. In clinical practice, single-site needle biopsies are used to sample this diversity, but cancer biomarkers may be confounded by spatiogenomic heterogeneity within individual tumors. Here we investigate clonally expressed genes as a solution to the sampling bias problem by analyzing multiregion whole-exome and RNA sequencing data for 450 tumor regions from 184 patients with lung adenocarcinoma in the TRACERx study.

View Article and Find Full Text PDF

Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke.

Brain Topogr

January 2025

Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No 152, Ai Guo Road, Dong Hu District, Nanchang, Jiangxi, 330006, China.

Stroke is a condition characterized by damage to the cerebral vasculature from various causes, resulting in focal or widespread brain tissue damage. Prior neuroimaging research has demonstrated that individuals with stroke present structural and functional brain abnormalities, evident through disruptions in motor, cognitive, and other vital functions. Nevertheless, there is a lack of studies on alterations in static and dynamic functional network connectivity in the brains of stroke patients.

View Article and Find Full Text PDF

Network-based transfer of pan-cancer immunotherapy responses to guide breast cancer prognosis.

NPJ Syst Biol Appl

January 2025

Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China.

Breast cancer prognosis is complicated by tumor heterogeneity. Traditional methods focus on cancer-specific gene signatures, but cross-cancer strategies that provide deeper insights into tumor homogeneity are rarely used. Immunotherapy, particularly immune checkpoint inhibitors, results from variable responses across cancers, offering valuable prognostic insights.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!