Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To survive in a world dominated by bacteria, eukaryotes have evolved numerous self-defense strategies. While some defenses are recent evolutionary innovations, others are ancient, with roots early in eukaryotic history. With a focus on antibacterial immunity, we highlight the evolution of pattern recognition receptors that detect bacteria, where diverse functional classes have been formed from the repeated use and reuse of a small set of protein domains. Next, we discuss core microbicidal strategies shared across eukaryotes, and how these systems may have been co-opted from ancient cellular mechanisms. We propose that studying antibacterial responses across diverse eukaryotes can reveal novel modes of defense, while highlighting the critical innovations that occurred early in the evolution of our own immune systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275444 | PMC |
http://dx.doi.org/10.1016/j.gde.2019.09.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!