Moisture influences most physical wood properties and plays an important role in degradation processes. Like most other porous materials, wood exhibits sorption hysteresis. That is, the moisture content is higher if equilibrium is reached by desorption than if it is reached by absorption under the same ambient climate conditions. The mechanism of moisture uptake by wood are different in the hygroscopic and over-hygroscopic moisture ranges and due to methodical issues, most studies of sorption hysteresis have been performed in the hygroscopic range. In the present study, total sorption hysteresis was separated into hysteresis in cell wall water and capillary water respectively in the whole moisture range by a novel combination of experimental techniques. Wood specimens were conditioned to several high moisture contents using a new system based on the pressure plate technique, and the distinction between cell wall water and capillary water was done with differential scanning calorimetry. The results showed that sorption hysteresis in wood cell walls exists in the whole moisture range. The cell walls were not saturated with water until the whole wood specimen was saturated which contradicts the long-held dogma that cell walls are saturated before significant amounts of capillary water are present in wood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857914 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225111 | PLOS |
J Am Chem Soc
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Air-conditioning systems, composed mainly of humidity control and heat reallocation units, play a pivotal role in upholding superior air quality and human well-being across diverse environments ranging from international space stations and pharmacies to granaries and cultural relic preservation sites, and to commercial and residential buildings. The adoption of sorbent water as the working pair and low-grade renewable or waste heat in adsorption-driven air-conditioning presents a state-of-the-art solution, notably for its energy efficiency and eco-friendliness vis-à-vis conventional electricity-driven vapor compression cycles. Here, we introduce a rational π-extension strategy to engineer an ultrarobust and highly porous zirconium metal-organic framework (Zr-MOF).
View Article and Find Full Text PDFLangmuir
December 2024
Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS─Laboratoire de Mécanique Paris-Saclay, 91190 Gif-sur-Yvette, France.
Sorption processes are critical for the drying and durability of cement-based materials, directly affecting their thermal properties. Temperature can substantially influence these processes. This work uses molecular simulations to study sorption in C-S-H pores under varying temperatures and relative humidity, considering pore sizes from the gel to the interlayer scale (between 11.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India.
The retention and mobility of arsenic (As) in soil depend on various physical and chemical factors. The knowledge of the sorption-desorption chemistry of As in soil is necessary for predicting the fate and behavior of As in soil environments. Therefore, this study assessed different organic (sugarcane bagasse and vermicompost) and inorganic amendments (steel slag and fly ash) for their impact on sorption-desorption of As in texturally different contaminated soils (of sandy clay (SC) and sandy clay loam (SCL) texture) to understand the effect of amendments on As retention and mobility.
View Article and Find Full Text PDFMolecules
November 2024
Key Laboratory of Archaeomaterials and Conservation, Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Ministry of Education, Beijing 100083, China.
Palm leaf manuscripts are a valuable part of world cultural heritage. Studying the mechanical properties of palm leaf manuscripts and their changes due to environmental influences is of great significance for understanding the material characteristics, aging mechanisms, and preventive conservation of these manuscripts. This study used dynamic vapor sorption (DVS) and a thermomechanical analyzer (TMA) to investigate the changes to the mechanical properties of palm leaf manuscripts in response to different relative humidity conditions and different time periods.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
GraPhage13 aerogels (GPAs) are ultralow density, porous structures fabricated through the self-assembly of graphene oxide (GO) and M13 bacteriophage. Given GPA's high surface area and extensive porous network, properties typically associated with highly adsorbent materials, it is essential to characterize its sorption capabilities, with a focus on unlocking its potential for advanced applications in areas such as biomedical sensing and environmental monitoring. Herein, the water, ethanol and acetone sorption properties of GPA were explored using dynamic vapor sorption (DVS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!