Introduction: Multiple sclerosis (MS) is one of the most common autoimmune diseases of the central nervous system (CNS). CNS has its own unique structural and functional features, while the lack of precision regulatory element with high specificity as therapeutic targets makes the development of disease treatment in the bottleneck. Recently, the immunomodulation and neuroprotection capabilities of bone marrow stromal stem cells (BMSCs) were shown in experimental autoimmune encephalomyelitis (EAE). However, the administration route and the safety evaluation limit the application of BMSC. In this study, we investigated the therapeutic effect of BMSC supernatant by nasal administration.

Methods: In the basis of the establishment of the EAE model, the BMSC supernatant were treated by nasal administration. The clinical score and weight were used to determine the therapeutic effect. The demyelination of the spinal cord was detected by LFB staining. ELISA was used to detect the expression of inflammatory factors in serum of peripheral blood. Flow cytometry was performed to detect pro-inflammatory cells in the spleen and draining lymph nodes.

Results: BMSC supernatant by nasal administration can alleviate B cell-mediated clinical symptoms of EAE, decrease the degree of demyelination, and reduce the inflammatory cells infiltrated into the central nervous system; lessen the antibody titer in peripheral bloods; and significantly lower the expression of inflammatory factors. As a new, non-invasive treatment, there are no differences in the therapeutic effects between BMSC supernatant treated by nasal route and the conventional applications, i.e. intraperitoneal or intravenous injection.

Conclusions: BMSC supernatant administered via the nasal cavity provide new sights and new ways for the EAE therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858701PMC
http://dx.doi.org/10.1186/s13287-019-1423-6DOI Listing

Publication Analysis

Top Keywords

bmsc supernatant
20
supernatant nasal
12
bone marrow
8
marrow stromal
8
stromal stem
8
eae therapy
8
central nervous
8
nervous system
8
supernatant treated
8
treated nasal
8

Similar Publications

Background: Chronic liver damage (CLD) is a long-term and progressive liver condition characterized by inflammation, fibrosis, and impaired liver function, which ultimately lead to severe complications such as cirrhosis or liver cancer. Quercetin (Que), a flavonoid in various plants, possesses anti-inflammatory, antiviral, anti-ischemic, and anticancer properties. Recently, extracellular vesicles (EVs) derived from pretreated bone marrow mesenchymal stem cells (BMSCs) have shown immense potential in treating various diseases, including CLD.

View Article and Find Full Text PDF

Chronic osteomyelitis is a chronic bone infection characterized by progressive osteonecrosis and dead bone formation, which is closely related to persistent infection and chronic inflammation. Exosomes derived from bone marrow-derived mesenchymal stem cells (BMSC) play an important role in bone tissue regeneration and the modulation of inflammatory processes. However, their role and mechanism of action in osteomyelitis have not been reported so far.

View Article and Find Full Text PDF

As one of the most aggressive and lethal cancers, pancreatic cancer is highly associated with cancer-associated fibroblasts (CAFs) that influence the development and progression of cancer. Targeted reprogramming of CAFs may be a promising strategy for pancreatic cancer. This study aims to construct engineered extracellular vesicles (EVs) with surface modification of integrin α5 (ITGA5)-targeting peptide and high internal expression of miR-148a-3p by endogenous modification for targeted reprogramming of pancreatic CAFs.

View Article and Find Full Text PDF

Background: Steroid-induced osteonecrosis of the femoral head (SONFH) is a disease characterized by a collapsed femoral head caused by the overuse of glucocorticoids. Dysfunction of bone marrow mesenchymal stem cells (BMSCs) is an important pathological feature of SONFH. In this study, we investigated whether exosomes from SHEDs (stem cells from human exfoliated deciduous teeth) have a therapeutic effect on glucocorticoid-induced inhibition of proliferation and osteogenesis in BMSCs, and elucidated the underlying mechanisms involved.

View Article and Find Full Text PDF

Introduction: Obesity-induced bone loss affects the life quality of patients all over the world. Irisin, one of the myokines, plays an essential role in bone and fat metabolism.

Objective: Investigate the effects of irisin on bone metabolism via adipocytes in the bone marrow microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!