Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mixed matrix membranes (MMMs) made from inorganic fillers and polymers is a kind of promising candidate for gas separation. In this work, two-dimensional MXene nanosheets were synthesized and incorporated into a polyether-polyamide block copolymer (Pebax) matrix to fabricate MMM for CO capture. The physicochemical properties of MXene nanosheets and MXene/Pebax membranes were studied systematically. The introduction of MXene nanosheets provided additional molecular transport channels and meanwhile enhanced the CO adsorption capacity, thereby enhancing both the CO peremance and CO /N selectivity of Pebax membrane. The optimized MXene/Pebax membrane with a MXene loading of 0.15 wt % displayed a high separation performance with a CO permeance of 21.6 GPU and a CO /N selectivity of 72.5, showing potential application in CO capture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.201901433 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!