Purpose: To investigate for the first time the potentialities of obtaining microdosimetric measurements in scanned clinical carbon-ion beams using synthetic single crystal diamond detector and to verify the spectral conversion methods.

Methods: Microdosimetric measurements were performed at different depths in a water phantom at the therapeutic scanned carbon-ion beam of the National Center of Oncological Hadrontherapy (CNAO) in Pavia, using waterproof encapsulated diamond microdosimeter developed at "Tor Vergata" University. A monoenergetic carbon-ion beam of 195 MeV/μ scanned over a square field of 2 × 2 cm was used. Experimental microdosimetric spectra were compared with those obtained with a propane-filled Tissue Equivalent Proportional Counters (TEPCs) microdosimeter in the same facility at the same conditions. To this purpose, the spectra in diamond were converted to the spectra that would have been collected with a propane-filled cylindrical sensitive volume by means of a novel analytic methodology, recently developed at MedAustron.

Results: The microdosimetric spectra acquired by the diamond microdosimeter show different shapes in the 10 keV µm  ÷ 10  keV µm lineal-energy range at different water depths. In spite of the high counting rate, no spectral distortion, due to pile-up events and polarization effects, were observed. The experimental spectra have a low detection threshold of about 6 keV µm due to the electronic noise in the irradiation room. The comparison between the spectra converted to propane from diamond detector and the spectra collected directly with propane-filled TEPC shows a good agreement in the whole lineal-energy range. Furthermore this comparison confirms that diamond detector response is LET independent. The frequency- and dose-mean lineal energy values were also assessed for all spectra. The frequency-mean values obtained with diamond microdosimeter at different depths scales rather well with the absorbed dose values.

Conclusions: Microdosimetric characterization of a synthetic single crystal diamond detector in high-energy scanned carbon-ion beams was performed. The results of the present study showed that this detector is suitable for microdosimetry of clinical carbon ion beams. In addition, the good agreement between the converted diamond spectra and those obtained with TEPC provides the first experimental validation of the spectra conversion methodologies as valuable tools for the comparison of spectra collected with different detectors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.13926DOI Listing

Publication Analysis

Top Keywords

diamond detector
16
carbon-ion beams
12
diamond microdosimeter
12
spectra collected
12
spectra
11
diamond
10
microdosimetric characterization
8
clinical carbon-ion
8
beams synthetic
8
spectral conversion
8

Similar Publications

The increasing interest in hadron therapy has heightened the need for accurate and reliable methods to assess radiation quality and the biological effectiveness of particles used in treatment. Microdosimetry has emerged as a key tool for this, demonstrating its potential, reliability, and suitability. In this context, solid-state microdosimeters offer technological advantages over traditional Tissue-Equivalent Proportional Counters, and recent advancements have further improved their performance and reliability.

View Article and Find Full Text PDF

The Particle Time of Flight (PTOF) diagnostic is a chemical vapor deposition diamond-based detector and is the only diagnostic for measuring nuclear bang times of low yield (<1013) shots on the National Ignition Facility. Recently, a comprehensive study of detector impulse responses revealed certain detectors with very fast and consistent impulse responses with a rise time of <50 ps, enabling low yield burn history measurements. At the current standoff of 50 cm, this measurement is possible with fast 14 MeV neutrons from deuterium-tritium (DT) fusion plasmas.

View Article and Find Full Text PDF
Article Synopsis
  • Proton Minibeam Radiation Therapy has been promising in enhancing treatment efficacy compared to traditional radiation, but more research into its biological mechanisms is needed.
  • A mechanical collimation setup was developed to produce 250µm minibeams with a 1000µm spacing, with optimization using Monte Carlo simulations conducted at various proton therapy sites.
  • Results showed a peak-to-valley dose ratio (PVDR) of 10 in Dresden and 14 in Seattle, with some discrepancies between dosimetry methods that can be addressed with correction factors.
View Article and Find Full Text PDF

For many synchrotron radiation experiments, it is critical to perform continuous, real-time monitoring of the X-ray flux for normalization and stabilization purposes. Traditional transmission-mode monitors included metal mesh foils and ionization chambers, which suffered from low signal stability and size constraints. Solid-state detectors are now considered superior alternatives for many applications, offering appealing features like compactness and signal stability.

View Article and Find Full Text PDF

Simultaneous detection of a wide range of synthetic and natural dyes in artworks using UHPLC-PDA-HRMS.

J Chromatogr A

January 2025

Analytical Sciences, van 't Hoff Institute for Molecular Sciences, Faculty of Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Conservation and Restoration of Cultural Heritage, Amsterdam School for Heritage, Memory and Material Culture (AHM), Faculty of Humanities, University of Amsterdam, P.O. Box 94552, 1090 GN, Amsterdam, the Netherlands; Centre of Analytical Sciences Amsterdam, Science Park, 904, 1098 XH Amsterdam, The Netherlands. Electronic address:

This paper presents a validated method using ultra-high pressure liquid chromatography with photodiode array detection coupled to high-resolution mass spectrometry (UHPLC-PDA-HRMS) for the simultaneous analysis of a wide range of natural and synthetic organic colourants, including neutral, acidic and basic dyes. In total, 30 natural and 62 synthetic organic dye reference samples (which contain 118 compounds because some of the dyes are composed of mixtures) were analysed. The method demonstrated good linearity for the 12 dyes selected for method validation achieving correlation coefficients (R) exceeding 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!