Experimental separation of the biotic and abiotic components of soil will help in understanding the role of taxonomy and composition in soil microbiome function. The most common approach to soil microbiome transfer involves direct dilution of a non-sterile source soil into sterile recipient soils, introducing both microorganisms and soil compounds, leaving abiotic and biotic factors confounded. Here, we contrast microbiome transfer into sterile recipient soils through (i) direct soil transfer at two dilutions and (ii) a new approach, sustained contact between source and recipient soils. Sustained soil-to-soil contact retains separation between source and recipient soils, allows for multiple colonization events and increases confidence that microorganisms observed in recipient soils are active and growing. Each approach produced distinct microbiomes in recipient soils after 1 and 6 weeks of incubation, indicating that transfer method impacts microbial composition. The extent to which recipient microbiomes resembled source microbiomes varied by soil type, although in general, direct soil transfer appeared to most closely approximate source microbiomes. However, irrespective of transfer method, most bacterial sequences in recipient soils were from organisms transferred through all methods. We discuss the merits of each method for controlled soil microbiome studies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnz228DOI Listing

Publication Analysis

Top Keywords

recipient soils
28
microbiome transfer
12
soil microbiome
12
soil
9
sustained soil-to-soil
8
soil-to-soil contact
8
soils
8
recipient
8
sterile recipient
8
direct soil
8

Similar Publications

Identifying the Molecular Signatures of Organic Matter Leached from Land-Applied Biosolids via 21 T FT-ICR Mass Spectrometry.

Environ Sci Technol

January 2025

National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States.

Intensification of wastewater treatment residual (i.e., biosolid) applications to watersheds can alter the amount and composition of organic matter (OM) mobilized into waterways.

View Article and Find Full Text PDF

Introduction: is a soil-transmitted helminth that can lead to life-threatening hyperinfection in transplant recipients. Targeted screening based on social history alone may preclude a large proportion of seropositive patients. Our institution implemented universal screening for kidney transplant candidates.

View Article and Find Full Text PDF

Case Report: pericardial and sternal wound infection following orthotopic heart transplantation.

Front Cardiovasc Med

January 2025

Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, United States.

, a genus of soil and vegetation-based fungi, is a rare cause of infections in immunocompromised individuals, including transplant recipients. In this case, we describe successful treatment of mediastinitis in the recipient of an orthotopic heart transplant. Treatment included multiple courses of combination antibiotic and antifungal therapy several surgical debridements, continuous mediastinal irrigation with antifungal agents, and staged closure with an omental flap.

View Article and Find Full Text PDF

Afforestation is increasingly recognized as a critical strategy to restore ecosystems and enhance biodiversity on post-agricultural landscapes. However, agricultural legacies, such as altered soil structure, nutrient imbalances, and depleted microbial diversity, can slow down forest establishment or cause ecosystems to deviate from expected successional trajectories. In this opinion paper, we explore the potential of soil inoculations as a tool to overcome these challenges by introducing beneficial microbial communities that can accelerate ecosystem recovery and forest development.

View Article and Find Full Text PDF

Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to belowground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable, but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated belowground by un-labelled trees.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!