Herein we report the development of diffusion ordered NMR spectroscopy (DOSY) for its use to characterize metal complexes containing paramagnetic first row transition metal elements. This technique is capable of assessing the purity and speciation of paramagnetic complexes, and also provides a convenient method to provide qualitative and sometimes quantitative molecular weight data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cc08229h | DOI Listing |
Soft Matter
January 2025
Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
In polymerization-induced phase separation, the impact of polymer-substrate interaction on the dynamics of phase separation for polymer blends is important in determining the final morphology and properties of polymer materials as the surface can act as another driving force for phase separation other than polymerization. We modify the previously-developed polymerizing Cahn-Hilliard (pCH) method by adding a surface potential to model the phase separation behavior of a mixture of two species independently undergoing linear step-growth polymerization in the presence of a surface. In our approach, we explicitly model polydispersity by separately considering different molecular-weight components with their own respective diffusion constants, and with the surface potential preferentially acting on only one species.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Energy decomposition analysis (EDA) based on density functional theory (DFT) and self-consistent field (SCF) calculations has become widely used for understanding intermolecular interactions. This work reports a new approach to EDA for post-SCF wave functions based on closed-shell restricted second-order Mo̷ller-Plesset (MP2) together with an efficient implementation that generalizes the successful SCF-level second-generation absolutely localized molecular orbital EDA approach, ALMO-EDA-II, and improves upon MP2 ALMO-EDA-I. The new MP2 ALMO-EDA-II provides distinct energy contributions for a frozen interaction energy containing permanent electrostatics and Pauli repulsions, polarized energy-yielding induced electrostatics, dispersion-corrected energy, and the fully relaxed energy, which describes charge transfer.
View Article and Find Full Text PDFNanoscale
January 2025
Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, Hiroshima 739-8527, Japan.
Highly ordered porous structured particles comprising three-way catalyst (TWC) nanoparticles have attracted attention because of their remarkable catalytic performance. However, the conditions for controlling their pore arrangement to form interconnected pore structures remain unclear. In particular, the correlation between framework thickness (distance between pores) or macroporosity and the diffusion of gaseous reactants to achieve a high catalytic performance has not been extensively discussed.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.
We performed all-atom and coarse-grained simulations of lipid bilayer mixtures of the unsaturated lipid DOPC, with saturated lipids having the same 18-carbon acyl tails and different headgroups, to understand their mechanical properties. The secondary lipids were DSPG, DSPA, DSPS, DSPC, and DSPE. The DOPC:DSPG system with 65:35 molar ratio was the softest, with area compressibility modulus ∼ 22% smaller than the pure DOPC value.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Department of Mathematics, Jimma University, Jimma, Ethiopia.
Objective: In this work, singularly perturbed time dependent delay parabolic convection-diffusion problem with Dirichlet boundary conditions is considered. The solution of this problem exhibits boundary layer at the right of special domain. In this layer the solution experiences steep gradients or oscillation so that traditional numerical methods may fail to provide smooth solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!