We report a room temperature (RT) operation of a Fe:CdTe laser pumped by a Q-switched 2.94 μm Er:YAl(AlO) laser. The Fe:CdTe laser produced 2 mJ of output energy at λ=5.55  μm with slope efficiency of 16% with respect to absorbed pump energy. With the use of an intracavity prism, the spectral tuning was demonstrated in the 5.1-6.3 μm range, being the longest wavelength tuning achieved for Fe:II-VI lasers. The lifetime of the upper laser level was measured to be 530 ns at RT.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.44.005453DOI Listing

Publication Analysis

Top Keywords

fecdte laser
12
room temperature
8
laser
5
2  mj room
4
temperature fecdte
4
laser tunable
4
tunable 63  μm
4
63  μm report
4
report room
4
temperature operation
4

Similar Publications

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Oral candidiasis, predominantly caused by , presents significant challenges in treatment due to increasing antifungal resistance and biofilm formation. Antimicrobial photodynamic therapy (aPDT) using natural photosensitizers like riboflavin and hypericin offers a potential alternative to conventional antifungal therapies. : A systematic review was conducted to evaluate the efficacy of riboflavin- and hypericin-mediated aPDT in reducing Candida infections.

View Article and Find Full Text PDF

Selective Laser Sintering 3D Printing of Carvedilol Tablets: Enhancing Dissolution Through Amorphization.

Pharmaceutics

December 2024

Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.

Background/objectives: Selective laser sintering (SLS) is one of the most promising 3D printing techniques for pharmaceutical applications as it offers numerous advantages, such as suitability to work with already approved pharmaceutical excipients, the elimination of solvents, and the ability to produce fast-dissolving, porous dosage forms with high drug loading. When the powder mixture is exposed to elevated temperatures during SLS printing, the active ingredients can be converted from the crystalline to the amorphous state, which can be used as a strategy to improve the dissolution rate and bioavailability of poorly soluble drugs. This study investigates the potential application of SLS 3D printing for the fabrication of tablets containing the poorly soluble drug carvedilol with the aim of improving the dissolution rate of the drug by forming an amorphous form through the printing process.

View Article and Find Full Text PDF

Precision pesticide application mainly relies on canopy volume, resulting in varied application effectiveness across different density areas of orchard trees. This study examined pesticide application effectiveness based on the spray wind, canopy volume, and leaf area within the canopy, providing variable bases for precise regulation of spray wind and pesticide dosage. The study addresses the knowledge gap by utilizing laser detection and ranging (LiDAR) to measure the thickness and leaf area of orchard tree canopies.

View Article and Find Full Text PDF

In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!