Vildagliptin (Vilda), a dipeptidyl peptidase-4 (DPP-4) inhibitor, has been highlighted as a promising therapeutic agent for neurodegenerative diseases as Alzheimer's and Parkinson's diseases. Vilda's effect is mostly linked to PI3K/Akt signaling in CNS. Moreover, PI3K/Akt activation reportedly enhanced survival and dampened progression of Huntington's disease (HD). However, Vilda's role in HD is yet to be elucidated. Thus, the aim of the study is to uncover the potentiality of Vilda in HD and unfold its link with PI3K/Akt pathway in 3-nitropropionic acid (3NP) rat model. Rats were randomly assigned into 4 groups; group 1 received saline, whereas, groups 2, 3 and 4 received 3NP (10 mg/kg/day; i.p.) for 14 days, concomitantly with Vilda (5 mg/kg/day; p.o.) in groups 3 and 4, and wortmannin (WM), a PI3K inhibitor, (15 μg/kg/day; i.v.) in group 4. Vilda improved cognitive and motor perturbations induced by 3NP, as confirmed by striatal histopathological specimens and immunohistochemical examination of GFAP. The molecular signaling of Vilda was estimated by elevation of GLP-1 level and protein expressions of survival proteins; p85/p55 (pY458/199)-PI3K, pS473-Akt. Together, it boosted striatal neurotrophic factors and receptor; pS133-CREB, BDNF, pY515-TrKB, which subsequently maintained mitochondrial integrity, as indicated by enhancing both SDH and COX activities, and the redox modulators; Sirt1, Nrf2. Such neuroprotection restored imbalance of neurotransmitters through increasing GABA and suppressing glutamate as well PDE10A. These effects were reversed by WM pre-administration. In conclusion, Vilda purveyed significant anti-Huntington effect which may be mediated, at least in part, via activation of GLP-1/PI3K/Akt pathway in 3NP rat model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007456PMC
http://dx.doi.org/10.1007/s13311-019-00805-5DOI Listing

Publication Analysis

Top Keywords

rat model
12
huntington's disease
8
pathway 3-nitropropionic
8
3-nitropropionic acid
8
3np rat
8
vilda
6
vildagliptin attenuates
4
attenuates huntington's
4
disease activation
4
activation glp-1
4

Similar Publications

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

MicroRNA-204-5p Deficiency within the vmPFC Region Contributes to Neuroinflammation and Behavioral Disorders via the JAK2/STAT3 Signaling Pathway in Rats.

Adv Sci (Weinh)

January 2025

Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.

Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression.

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Skin-Integrated Electrogenetic Regulation of Vasculature for Accelerated Wound Healing.

Adv Sci (Weinh)

January 2025

ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.

Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!