Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Monitoring and imaging glutathione (GSH) in living systems is an essential tool to determine the key roles of GSH in biological pathways, but most fluorescent sensors can only be used in vitro because of their potential biotoxicity. Here, a peptide-based fluorescent sensor, FP, has been successfully designed and synthesized based on the biocompatibility of the peptide backbone and low toxicity. The design strategy of FP contains a specific spatial structure of the peptide sequence which selectively binds to Cu, triggering fluorescence quenching. Interestingly, the fluorescence of FP can be fully restored by GSH, due to the strong binding between Cu and the GSH sulfhydryl groups. Finally, the sensor is highly sensitive and selective for imaging GSH both in vitro and in vivo with low toxicity. Thus, FP with its strong "on-off-on" fluorescence changes is a powerful way to image GSH both in cells and zebrafish larvae to study the GSH pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-019-02257-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!