Purpose: To assess the predictive power of pre-therapy F-FDG PET/CT-based radiomic features for epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer.

Methods: Two hundred and forty-eight lung cancer patients underwent pre-therapy diagnostic F-FDG PET/CT scans and were tested for genetic mutations. The LIFEx package was used to extract 47 PET and 45 CT radiomic features reflecting tumor heterogeneity and phenotype. The least absolute shrinkage and selection operator (LASSO) algorithm was used to select radiomic features and develop a radiomics signature. We compared the predictive performance of models established by radiomics signature, clinical variables, and their combinations using receiver operating curves (ROCs). In addition, a nomogram based on the radiomics signature score (rad-score) and clinical variables was developed.

Results: The patients were divided into a training set (n = 175) and a validation set (n = 73). Ten radiomic features were selected to build the radiomics signature model. The model showed a significant ability to discriminate between EGFR mutation and EGFR wild type, with area under the ROC curve (AUC) equal to 0.79 in the training set, and 0.85 in the validation set, compared with 0.75 and 0.69 for the clinical model. When clinical variables and radiomics signature were combined, the AUC increased to 0.86 (95% CI [0.80-0.91]) in the training set and 0.87 (95% CI [0.79-0.95]) in the validation set, thus showing better performance in the prediction of EGFR mutations.

Conclusion: The PET/CT-based radiomic features showed good performance in predicting EGFR mutation in non-small cell lung cancer, providing a useful method for the choice of targeted therapy in a clinical setting.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-019-04592-1DOI Listing

Publication Analysis

Top Keywords

radiomic features
20
radiomics signature
20
egfr mutation
16
non-small cell
12
cell lung
12
lung cancer
12
clinical variables
12
training set
12
validation set
12
pre-therapy f-fdg
8

Similar Publications

Purpose: To evaluate the effectiveness of magnetic resonance imaging (MRI)-based intratumoral and peritumoral radiomics models for predicting deep myometrial invasion (DMI) of early-stage endometrioid adenocarcinoma (EAC).

Methods: The data of 459 EAC patients from three centers were retrospectively collected. Radiomics features were extracted separately from the intratumoral and peritumoral regions expanded by 0 mm, 5 mm, and 10 mm on unimodal and multimodal MRI.

View Article and Find Full Text PDF

Radiomics-based Machine Learning Approach to Predict Chemotherapy Responses in Colorectal Liver Metastases.

J Anus Rectum Colon

January 2025

Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Objectives: This study explored the clinical utility of CT radiomics-driven machine learning as a predictive marker for chemotherapy response in colorectal liver metastasis (CRLM) patients.

Methods: We included 150 CRLM patients who underwent first-line doublet chemotherapy, dividing them into a training cohort (n=112) and a test cohort (n=38). We manually delineated three-dimensional tumor volumes, selecting the largest liver metastasis for measurement, using pretreatment portal-phase CT images and extracted 107 radiomics features.

View Article and Find Full Text PDF

CECT-Based Radiomic Nomogram of Different Machine Learning Models for Differentiating Malignant and Benign Solid-Containing Renal Masses.

J Multidiscip Healthc

January 2025

Department of Nuclear Medicine, The First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, People's Republic of China.

Objective: This study aimed to explore the value of a radiomic nomogram based on contrast-enhanced computed tomography (CECT) for differentiating benign and malignant solid-containing renal masses.

Materials And Methods: A total of 122 patients with pathologically confirmed benign (n=47) or malignant (n=75) solid-containing renal masses were enrolled in this study. Radiomic features were extracted from the arterial, venous and delayed phases and further analysed by dimensionality reduction and selection.

View Article and Find Full Text PDF

Objective: The objective of this study was to assess the maturation of matrix-associated autologous chondrocyte transplantation (MACT) grafts up to 2 years after the surgery using gray-level co-occurrence matrix (GLCM) texture analysis of quantitative T maps, compare the results with the microfracturing technique (MFX) control group, and relate these results to the morphological MOCART 2.0 score.

Design: A subcohort of 37 patients from prospective, multi-center study underwent examination on a 3T MR scanner, including a T mapping sequence at 3, 12, and 24 months after surgery.

View Article and Find Full Text PDF

Background: To develop and test the performance of a fully automated system for classifying renal tumor subtypes via deep machine learning for automated segmentation and classification.

Materials And Methods: The model was developed using computed tomography (CT) images of pathologically proven renal tumors collected from a prospective cohort at a medical center between March 2016 and December 2020. A total of 561 renal tumors were included: 233 clear cell renal cell carcinomas (RCCs), 82 papillary RCCs, 74 chromophobe RCCs, and 172 angiomyolipomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!