Drug resistance in Mycobacterium tuberculosis is relentlessly progressing while only a handful of novel drug candidates are developed. Here we describe a GFP-based high-throughput screening of 386,496 diverse compounds to identify putative tuberculosis drug candidates. In an exploratory analysis of the model organism M. bovis BCG and M. smegmatis and the subsequent screening of the main library, we identified 6354 compounds with anti-mycobacterial activity. These hit compounds were predominantly selective for mycobacteria while dozens had activity in the low μM range. We tested toxicity against the human monocyte/macrophage cell line THP-1 and elaborated activity against M. tuberculosis growing in liquid broth, under unique conditions such as non-replicating persistence or inhibition of M. tuberculosis residing in macrophages. Finally, spontaneous compound-resistant M. tuberculosis mutants were selected and subsequently analyzed by whole genome sequencing. In addition to compounds targeting the well-described proteins Pks13 and MmpL3, we identified two novel scaffolds targeting the bifunctional guanosine pentaphosphate synthetase/ polyribonucleotide nucleotidyltransferase GpsI, or interacting with the aminopeptidase PepB, a probable pro-drug activator. KEY MESSAGES: A newly identified scaffold targets the bifunctional enzyme GpsI. The aminopeptidase PepB is interacting with a second novel scaffold. Phenotypic screenings regularly identify novel compounds targeting Pks13 and MmpL3.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-019-01840-7DOI Listing

Publication Analysis

Top Keywords

novel scaffolds
8
scaffolds targeting
8
mycobacterium tuberculosis
8
tuberculosis drug
8
drug candidates
8
compounds targeting
8
pks13 mmpl3
8
aminopeptidase pepb
8
tuberculosis
6
compounds
5

Similar Publications

Thio-ProTide strategy: A novel HS donor-drug conjugate (DDC) alleviates hepatic injury innate lysosomal targeting.

Acta Pharm Sin B

December 2024

Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China.

Hydrogen sulfide (HS) is a gas signaling molecule with versatile bioactivities; however, its exploitation for disease treatment appears challenging. This study describes the design and characterization of a novel type of HS donor-drug conjugate (DDC) based on the thio-ProTide scaffold, an evolution of the ProTide strategy successfully used in drug discovery. The new HS DDCs achieved hepatic co-delivery of HS and an anti-fibrotic drug candidate named hydronidone, which synergistically attenuated liver injury and resulted in more sufficient intracellular drug exposure.

View Article and Find Full Text PDF

A novel molecular design based on a quinazolinone scaffold was developed the attachment of aryl alkanesulfonates to the quinazolinone core through a thioacetohydrazide azomethine linker, leading to a new series of quinazolinone-alkanesulfonates 5a-r. The antimicrobial properties of the newly synthesized quinazolinone derivatives 5a-r were investigated to examine their bactericidal and fungicidal activities against bacterial pathogens like , (Gram-positive), , , (Gram-negative), in addition to (unicellular fungal). The tested compounds demonstrated reasonable bactericidal activities compared to standard drugs.

View Article and Find Full Text PDF

Pyrazoline is a 5-membered ring that has two adjacent nitrogen. It has gained advanced attention from medical and organic chemists due to very low cytotoxic activities. It is applicable and more applied in research fields and has various pharmacological activities, including cardiovascular, anti-tumor, and anti-cancer properties.

View Article and Find Full Text PDF

Objectives: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, but no drugs can cure this disease. Chalcones possess good antioxidant activity, anti-neuroinflammatory activity, neuroprotective effects, inhibitory effects on Aβ aggregation, and Aβ disaggregation ability. Therefore, chalcones are ideal lead compounds, and the discovery of novel anti-AD agent-based chalcones is necessary.

View Article and Find Full Text PDF

Osteoporosis is caused by an imbalance between bone resorption and formation, which decreases bone mass and strength and increases the risk of fracture. Therefore, osteoporosis is treated with oral resorption inhibitors, such as bisphosphonates, and parenteral osteogenic drugs, including parathyroid hormone and antisclerostin antibodies. However, orally active osteogenic drugs have not yet been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!