The new generation of solar cells aims to overcome many of the issues created by silicon-based devices (e.g., decommissioning, flexibility and high-energy production costs). Due to the scarcity of the resources involved in the process and the need for the reduction of potential pollution, a greener approach to solar cell material production is required. Among others, the solvothermal approach for the synthesis of nanocrystalline Cu-Sn-S (CTS) materials fulfils all of these requirements. The material constraints must be considered, not only for the final product, but for the whole production process. Most works reporting the successful synthesis of CTS have employed surfactants, high pressure or noxious solvents. In this paper, we demonstrate the synthesis of nanocrystalline kuramite by means of a simpler, greener and scalable solvothermal synthesis. We exploited a multianalytical characterization approach (X-ray diffraction, extended X-ray absorption fine structure, field emission scanning electron microscopy, Raman spectroscopy and electronic microprobe analysis (EMPA)) to discriminate kuramite from other closely related polymorphs. Moreover, we confirmed the presence of structural defects due to a relevant antisite population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839557 | PMC |
http://dx.doi.org/10.3762/bjnano.10.202 | DOI Listing |
ACS Nano
December 2024
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
Pirquitasite AgZnSnS (AZTS) nanocrystals (NCs) are emergent, lead-free emissive materials in the coinage chalcogenide family with applications in optoelectronic technologies. Like many multinary nanomaterials, their phase-pure synthesis is complicated by the generation of impurities, e.g.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Electrical Engineering, Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Memristors based on 2D materials (2DMs) have attracted considerable research interest due to their excellent switching performance. Former synthesis methods for 2DMs aimed to synthesize 2DMs with a large grain size. However, these methods cause a stochastic distribution of defects in high-density memristor arrays, resulting in device nonuniformity.
View Article and Find Full Text PDFPharmaceutics
October 2024
Southwest State University, 50 let Oktyabrya Str., 94, 305040 Kursk, Russia.
The issue of effective wound healing remains highly relevant. The objective of the study is to develop an optimal method for the synthesis of nanosized cerium oxide powder obtained via the thermal decomposition of cerium carbonate precipitated from aqueous nitrate solution for the technical creation of new drugs in production conditions; the select modification of synthesis under different conditions based on the evaluation of the physicochemical characteristics of the obtained material and its biological activity, and an evaluation of the broad-spectrum effect on cells involved in the regeneration of skin structure as well as antimicrobial properties. Several modes of the industrial synthesis of cerium dioxide nanoparticles (NPs) were carried out.
View Article and Find Full Text PDFGels
October 2024
Boreskov Institute of Catalysis, 5 Lavrentyev Ave., Novosibirsk 630090, Russia.
A series of Pd/MgO catalysts based on nanocrystalline MgO were prepared via different sol-gel approaches. In the first two cases, palladium was introduced during the gel preparation, followed by drying it in supercritical or ambient conditions. In the third case, aerogel-prepared MgO was impregnated with an ethanol solution of Pd(NO).
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States.
Natural manganese (Mn) oxide coatings, resulting from the heterogeneous nucleation on foreign substances, have garnered interest based on their importance in the reaction with organic substances and in environmental systems. However, the heterogeneous nucleation of the natural Mn oxide coatings still remains elusive. Here, fast photochemical oxidation of Mn(aq), we show that Mn(IV) oxide nuclei form and aggregate on quartz in three distinct successive stages: (i) a nanocrystalline film of unaligned grain forms, (ii) nanoislands develop on the film, and (iii) nanorods form on the nanoislands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!