Background: Both cell adhesion and matrix metalloproteinase (MMP) activity depend on pH at the cell surface. By regulating extracellular juxtamembrane pH, the Na/H exchanger NHE1 plays a significant part in human melanoma (MV3) cell migration and invasion. Because NHE1, besides its pH-regulatory transport function, also serves as a structural element tying the cortical actin cytoskeleton to the plasma membrane, we investigated whether NHE1 affects cortical stiffness of MV3 cells, and how this makes an impact on their invasiveness.
Methods: NHE1 overexpressing MV3 cells were compared to the corresponding mock-transfected control cells. NHE1 expression was verified by Western blotting, cariporide (HOE642) was used to inhibit NHE1 activity, cell stiffness was determined by atomic force microscopy, and F-actin was visualized by phalloidin-staining. Migration on, and invasion of, native and glutaraldehyde-fixed collagen I substrates were analyzed using time-lapse video microscopy and Boyden-chamber assays, respectively. MMP secretion and activity were detected by Western blot and zymography, respectively. MMP activity was inhibited with NNGH.
Results: The cortical, but not the bulk stiffness, was significantly higher in NHE1 overexpressing cells. This increase in cortical stiffness was accompanied by a reorganization of the cortical cytoskeleton, i.e. a condensation of F-actin underneath and along the plasma membrane. However, it was not affected by NHE1 inhibition. Nevertheless, actin dynamics is required for cell invasion as demonstrated with the application of cytochalasin D. NHE1 overexpression was associated with an elevated MMP3 secretion and an increase in the invasion of a native matrix. This increase in invasiveness could be antagonized by the MMP inhibitor NNGH. Transmigration through a glutaraldehyde-fixed, indigestible substrate was not affected by NHE1 overexpression.
Conclusion: NHE1, as a structural element and independently of its transport activity, contributes to the organization of the cortical F-actin meshwork and thus impacts cortical stiffness. Since NHE1 overexpression stimulates MMP3 secretion but does not change transmigration through a fixed substrate, MV3 cell invasion of a native substrate depends on MMP activity rather than on a modifiable cortical stiffness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842528 | PMC |
http://dx.doi.org/10.1186/s12935-019-1015-7 | DOI Listing |
J Mol Cell Cardiol
January 2025
Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:
Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Background: Central arterial stiffening is associated with brain white matter (WM) damage and gray matter (GM) volume loss in older adults, but little is known about this association from an adult lifespan perspective.
Purpose: To investigate the associations of central arterial stiffness with WM microstructural organization, WM lesion load, cortical thickness, and GM volume in healthy adults across the lifespan.
Study Type: This is a cross-sectional study.
Invest Ophthalmol Vis Sci
January 2025
Department of Physics, Boise State University, Boise, Idaho, United States.
Purpose: To elucidate the mechanical properties of the bovine lens cortical membrane (CM), the nuclear membrane (NM) containing cholesterol bilayer domains (CBDs), and whole bovine lenses.
Methods: The total lipids (lipids plus cholesterol) from the cortex and nucleus of a single bovine lens were isolated using the monophasic methanol extraction method. Supported CMs and NMs were prepared from total lipids extracted from the cortex and nucleus, respectively, using a rapid solvent exchange method and probe-tip sonication, followed by the fusion of unilamellar vesicles on a flat, freshly cleaved mica surface.
Med Sci Sports Exerc
January 2025
Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, CHINA.
Purpose: The present study aimed to compare the impacts of different exercise types on cardiovascular health and executive function in sedentary young individuals, and to determine the associations between cardiovascular function and executive function (EF) after exercise.
Methods: Sixty-three sedentary participants were randomly divided into high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), resistance exercise (RE), and control groups. Macro- and microvascular endothelial function were assessed using brachial artery flow-mediated dilation and fingertip reactive hyperemia index, respectively.
Bone
December 2024
Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!