Ramie is an important natural fiber crop, and the fiber yield and its related traits are the most valuable traits in ramie production. However, the genetic basis for these traits is still poorly understood, which has dramatically hindered the breeding of high yield in this fiber crop. Herein, a high-density genetic map with 6,433 markers spanning 2476.5 cM was constructed using a population derived from two parents, cultivated ramie Zhongsizhu 1 (ZSZ1) and its wild progenitor B. nivea var. tenacissima (BNT). The fiber yield (FY) and its four related traits-stem diameter (SD) and length (SL), stem bark weight (BW) and thickness (BT)-were performed for quantitative trait locus (QTL) analysis, resulting in a total of 47 QTLs identified. Forty QTLs were mapped into 12 genomic regions, thus forming 12 QTL clusters. Among 47 QTLs, there were 14 QTLs whose wild allele from BNT was beneficial. Interestingly, all QTLs in Cluster 10 displayed overdominance, indicating that the region of this cluster was likely heterotic loci. In addition, four fiber yield-related genes underwent positive selection were found either to fall into the FY-related QTL regions or to be near to the identified QTLs. The dissection of FY and FY-related traits not only improved our understanding to the genetic basis of these traits, but also provided new insights into the domestication of FY in ramie. The identification of many QTLs and the discovery of beneficial alleles from wild species provided a basis for the improvement of yield traits in ramie breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856109 | PMC |
http://dx.doi.org/10.1038/s41598-019-53399-5 | DOI Listing |
Vet Sci
December 2024
Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
Distinctive molecular approaches and tools, particularly high-throughput SNP genotyping, have been applied to determine and discover SNPs, potential genes of interest, indicators of evolutionary selection, genetic abnormalities, molecular indicators, and loci associated with quantitative traits (QTLs) in various livestock species. These methods have also been used to obtain whole-genome sequencing (WGS) data, enabling the implementation of genomic selection. Genomic selection allows for selection decisions based on genomic-estimated breeding values (GEBV).
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
is a pathogenic fungus that infects flax and causes significant yield losses. In this study, we assembled the genomes of four highly virulent strains using the Oxford Nanopore Technologies (ONT, R10.4.
View Article and Find Full Text PDFAdv Mater
December 2024
Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse, NY, 13244, USA.
Bamboo culm has been widely used in engineering for its high strength, lightweight, and low cost. Its outermost epidermis is a smooth and dense layer that contains cellulose, silica particles, and stomata and acts as a water and mechanical barrier. Recent experimental studies have shown that the layer has a higher mechanical strength than other inside regions.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
Modeling fibrous tissue for vascular fluid-structure interaction analysis poses significant challenges due to the lack of effective tools for preparing simulation data from medical images. This limitation hinders the physiologically realistic modeling of vasculature and its use in clinical settings. Leveraging an established lumen modeling strategy, we propose a comprehensive pipeline for generating thick-walled artery models.
View Article and Find Full Text PDFClin Neurophysiol
December 2024
Department of Clinical Neurophysiology, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119, 08035 Barcelona, Spain. Electronic address:
Introduction/objective: Biallelic expansion of the pentanucleotide AAGGG in the RFC1- gene is associated with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). This study aimed to comprehensively characterise this condition by conducting an in-depth neurophysiological examination of afflicted patients.
Methods: A retrospective analysis was conducted in 31 RFC1-positive patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!