Mutations in PINK1 and Parkin result in early-onset autosomal recessive Parkinson's disease (PD). PINK1/Parkin pathway maintain mitochondrial function by mediating the clearance of damaged mitochondria. However, the role of PINK1/Parkin in maintaining the balance of mtDNA heteroplasmy is still unknown. Here, we isolated mitochondrial DNA (mtDNA) from cortex, striatum and substantia nigra of wildtype (WT), PINK1 knockout (PINK1 KO) and Parkin knockout (Parkin KO) mice to analyze mtDNA heteroplasmy induced by PINK1/Parkin deficiency or aging. Our results showed that the Single Nucleotide Variants (SNVs) of late-onset somatic variants mainly increased with aging. Conversely, the early-onset somatic variants exhibited significant increase in the cortex and substantia nigra of PINK1 KO mice than WT mice of the same age. Increased average variant allele frequency was observed in aged PINK1 KO mice and in substantial nigra of aged Parkin KO mice than in WT mice. Cumulative variant allele frequency in the substantia nigra of PINK1 KO mice was significantly higher than that in WT mice, further supporting the pivotal role of PINK1 in mtDNA maintenance. This study presented a new evidence for PINK1 and Parkin in participating in mitochondrial quality control and provided clues for further revealing the role of PINK1 and Parkin in the pathogenesis of PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2019.10.112 | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
Perfluorohexane sulfonic acid (PFHxS) is extensively used in waterproof coatings and fire-fighting foams, and several studies have found it to be a potential health hazard, but there is still unknown about its effects on spermatogenesis. Our results showed that PFHxS-treated mice have significant reproductive toxicity, including a decrease in sperm count and motility, and the levels of sex hormones (P < 0.05).
View Article and Find Full Text PDFAm J Transl Res
December 2024
Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University Chongqing 400042, China.
Objective: To investigate the effects of Astragalus polysaccharide (APS) on skeletal muscle structure and function in D-galactose (D-gal)-induced C57BL/6J mice.
Methods: Eighteen male C57BL/6J mice of specific pathogen-free (SPF) grade, aged 8 weeks, were selected and divided into three groups: a control group (0.9% saline gavage for 16 weeks), a D-gal group (subcutaneous injection of 200 mg/kg D-galactose in the upper neck region, once daily for 8 weeks), and a D-gal + APS group (subcutaneous injection of 200 mg/kg D-galactose, once daily for 8 weeks, with concurrent administration of 100 mg/kg APS by gavage for 8 weeks).
Nan Fang Yi Ke Da Xue Xue Bao
January 2025
ZHANG Zhongjing School of Chinese Medicine, Rheumatology and Immunology, Nanyang Traditional Chinese Medicine Hospital, Nanyang 473004, China.
Objectives: To investigate the protective effect of Formula (YYHT) against high glucose-induced injury in mouse renal podocytes (MPC5 cells) and the possible mechanism.
Methods: Adult Wistar rats were treated with 19, 38, and 76 g/kg YYHT or saline via gavage for 7 days to prepare YYHT-medicated or blank sera for treatment of MPC5 cells cultured in high glucose (30 mmol/L) prior to transfection with a miR-21a-5p inhibitor or a miR-21a-5p mimic. The changes in miR-21a-5p expressions and the mRNA levels of FoxO1, PINK1, and Parkin in the treated cells were detected with qRT-PCR, and the protein levels of nephrin, podocin, FoxO1, PINK1, and Parkin were detected with Western blotting.
Eur J Med Res
January 2025
Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China.
Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.
Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.
Skelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!