Contamination of animal feed with multiple mycotoxins is an ongoing and growing issue, as over 60% of cereal crops worldwide have been shown to be contaminated with mycotoxins. The present study was carried out to assess the efficacy of commercial feed additives sold with multi-mycotoxin binding claims. Ten feed additives were obtained and categorised into three groups based on their main composition. Their capacity to simultaneously adsorb deoxynivalenol (DON), zearalenone (ZEN), fumonisin B1 (FB1), ochratoxin A (OTA), aflatoxin B1 (AFB1) and T-2 toxin was assessed and compared using an in vitro model designed to simulate the gastrointestinal tract of a monogastric animal. Results showed that only one product (a modified yeast cell wall) effectively adsorbed more than 50% of DON, ZEN, FB1, OTA, T-2 and AFB1, in the following order: AFB1 > ZEN > T-2 > DON > OTA > FB1. The remaining products were able to moderately bind AFB1 (44-58%) but had less, or in some cases, no effect on ZEN, FB1, OTA and T-2 binding (<35%). It is important for companies producing mycotoxin binders that their products undergo rigorous trials under the conditions which best mimic the environment that they must be active in. Claims on the binding efficiency should only be made when such data has been generated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891808PMC
http://dx.doi.org/10.3390/toxins11110659DOI Listing

Publication Analysis

Top Keywords

feed additives
12
commercial feed
8
binding claims
8
zen fb1
8
fb1 ota
8
ota t-2
8
comparative vitro
4
vitro assessment
4
assessment range
4
range commercial
4

Similar Publications

This study examined the effects of supplementing dairy cows with a mixture of essential oils on enteric CH emissions, apparent total-tract nutrient digestibility, N utilization, and lactational performance (production, components and efficiency). Thirty-two multiparous lactating Holstein cows were used in a randomized complete block design. Cows averaged (mean ± SD) 95 ± 15.

View Article and Find Full Text PDF

Reducing enteric methane emissions from livestock is a key environmental challenge, as methane is a major pollutant. The complexity of animal biology and diverse diet compositions make it difficult to develop strategy to control methane production. This study examined the use of plant phenolic extracts of Madhuca longifolia (ML-7) as a feed additive combined with various ruminant diets and dosages to find an effective supplement to reduce methane emissions.

View Article and Find Full Text PDF

The use of exogenous phytase and vitamin D metabolites such as 25-hydroxycholecalciferol (25-OH-D) for poultry is well consolidated, but the potential for additive effects when supplementing both requires further investigation. This study investigated possible interactions between supplementation of 25-OH-D and high doses of phytase for broilers fed Ca- and P-deficient diets. A total of 1 200 one-d-old male broiler chicks were randomly allocated from one of four dietary treatments in a 2 × 2 factorial arrangement: 600 or 2 000 phytase units (FYT)/kg and with or without the inclusion of 25-OH-D at 69 µg/kg, with 12 replicates of 25 broilers each.

View Article and Find Full Text PDF

The study investigates the effect of dietary herbal mixture (HM) levels on growing New Zealand White (NZW) rabbits' performance, carcass characteristics, blood biochemicals, and microbiological characteristics from 5 to 13 weeks of age. In this study, 96 New Zealand White rabbits (male and female ratio 1:1) were used, and they were five weeks old. The rabbits were at random allocated into four experimental groups (n = 24 each) comprising 12 replicates, each with two rabbits.

View Article and Find Full Text PDF

Melanoma poses a significant challenge to patients due to its aggressive nature and limited treatment options. Recent studies have suggested that lasalocid, a feed additive ionophore antibiotic, may have potential as an anticancer agent. However, the mechanism of lasalocid in melanoma is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!