Self-interacting proteins (SIPs) is of paramount importance in current molecular biology. There have been developed a number of traditional biological experiment methods for predicting SIPs in the past few years. However, these methods are costly, time-consuming and inefficient, and often limit their usage for predicting SIPs. Therefore, the development of computational method emerges at the times require. In this paper, we for the first time proposed a novel deep learning model which combined natural language processing (NLP) method for potential SIPs prediction from the protein sequence information. More specifically, the protein sequence is de novo assembled by . Then, we obtained the global vectors representation for each protein sequences by using natural language processing (NLP) technique. Finally, based on the knowledge of known self-interacting and non-interacting proteins, a multi-grained cascade forest model is trained to predict SIPs. Comprehensive experiments were performed on and datasets, which obtained an accuracy rate of 91.45% and 93.12%, respectively. From our evaluations, the experimental results show that the use of amino acid semantics information is very helpful for addressing the problem of sequences containing both self-interacting and non-interacting pairs of proteins. This work would have potential applications for various biological classification problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896115PMC
http://dx.doi.org/10.3390/genes10110924DOI Listing

Publication Analysis

Top Keywords

global vectors
8
vectors representation
8
representation protein
8
protein sequences
8
self-interacting proteins
8
proteins multi-grained
8
multi-grained cascade
8
cascade forest
8
forest model
8
predicting sips
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!