AI Article Synopsis

  • When combined with assistive robotic devices, brain/neural-computer interfaces (BNCI) can help restore daily activities for handicapped individuals, but user workload and stress need to be minimized for better effectiveness.
  • A study involving 11 healthy volunteers examined their physiological responses while using a hybrid control interface, specifically focusing on EEG and EoG tasks while wearing a whole-arm exoskeleton.
  • Results showed that EEG control led to higher stress and mental workload compared to EoG control, as indicated by changes in heart rate variability and skin conductance levels, which correlated with users' workload perception and emotional feedback.

Article Abstract

When combined with assistive robotic devices, such as wearable robotics, brain/neural-computer interfaces (BNCI) have the potential to restore the capabilities of handicapped people to carry out activities of daily living. To improve applicability of such systems, workload and stress should be reduced to a minimal level. Here, we investigated the user's physiological reactions during the exhaustive use of the interfaces of a hybrid control interface. Eleven BNCI-naive healthy volunteers participated in the experiments. All participants sat in a comfortable chair in front of a desk and wore a whole-arm exoskeleton as well as wearable devices for monitoring physiological, electroencephalographic (EEG) and electrooculographic (EoG) signals. The experimental protocol consisted of three phases: (i) Set-up, calibration and BNCI training; (ii) Familiarization phase; and (iii) Experimental phase during which each subject had to perform EEG and EoG tasks. After completing each task, the NASA-TLX questionnaire and self-assessment manikin (SAM) were completed by the user. We found significant differences (-value < 0.05) in heart rate variability (HRV) and skin conductance level (SCL) between participants during the use of the two different biosignal modalities (EEG, EoG) of the BNCI. This indicates that EEG control is associated with a higher level of stress (associated with a decrease in HRV) and mental work load (associated with a higher level of SCL) when compared to EoG control. In addition, HRV and SCL modulations correlated with the subject's workload perception and emotional responses assessed through NASA-TLX questionnaires and SAM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891352PMC
http://dx.doi.org/10.3390/s19224931DOI Listing

Publication Analysis

Top Keywords

eeg eog
8
level scl
8
associated higher
8
higher level
8
physiological responses
4
responses hybrid
4
bnci
4
hybrid bnci
4
control
4
bnci control
4

Similar Publications

Performance Improvement with Reduced Number of Channels in Motor Imagery BCI System.

Sensors (Basel)

December 2024

Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey.

Classifying Motor Imaging (MI) Electroencephalogram (EEG) signals is of vital importance for Brain-Computer Interface (BCI) systems, but challenges remain. A key challenge is to reduce the number of channels to improve flexibility, portability, and computational efficiency, especially in multi-class scenarios where more channels are needed for accurate classification. This study demonstrates that combining Electrooculogram (EOG) channels with a reduced set of EEG channels is more effective than relying on a large number of EEG channels alone.

View Article and Find Full Text PDF

Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process.

View Article and Find Full Text PDF

Comparative Analysis of Single-Channel and Multi-Channel Classification of Sleep Stages Across Four Different Data Sets.

Brain Sci

November 2024

Department of Neurology, Beth Isreal Deaconess Medical Center, Harvard Medical School, Harvard University, Cambridge, MA 02215, USA.

: Manually labeling sleep stages is time-consuming and labor-intensive, making automatic sleep staging methods crucial for practical sleep monitoring. While both single- and multi-channel data are commonly used in automatic sleep staging, limited research has adequately investigated the differences in their effectiveness. In this study, four public data sets-Sleep-SC, APPLES, SHHS1, and MrOS1-are utilized, and an advanced hybrid attention neural network composed of a multi-branch convolutional neural network and the multi-head attention mechanism is employed for automatic sleep staging.

View Article and Find Full Text PDF

Multimodal sleep staging network based on obstructive sleep apnea.

Front Comput Neurosci

December 2024

School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China.

Article Synopsis
  • Automatic sleep staging is important for diagnosing sleep disorders, but existing methods mainly focus on healthy populations, neglecting conditions like Obstructive Sleep Apnea (OSA).
  • The study introduces a new deep learning model called MSDC-SSNet, which utilizes electroencephalogram (EEG) and electrooculogram (EOG) signals to improve classification through advanced techniques like Transformer encoders and Multi-Scale Feature Extraction Modules.
  • The model demonstrated an 80.4% accuracy on OSA data and outperformed other leading methods, enhancing its practicality for diverse sleep populations.
View Article and Find Full Text PDF

Background: Sleep deprivation leads to decreased performance, alertness and degradation in the health status of a person. Often the person remains unaware of the reduced alertness and may end up taking inaccurate decisions. There was a need to study the sleep duration of college goers and to study the effect of total night-time sleep duration on daytime Electroencephalogram (EEG) characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!