A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Dual Neural Architecture Combined SqueezeNet with OctConv for LiDAR Data Classification. | LitMetric

Light detection and ranging (LiDAR) is a frequently used technique of data acquisition and it is widely used in diverse practical applications. In recent years, deep convolutional neural networks (CNNs) have shown their effectiveness for LiDAR-derived rasterized digital surface models (LiDAR-DSM) data classification. However, many excellent CNNs have too many parameters due to depth and complexity. Meanwhile, traditional CNNs have spatial redundancy because different convolution kernels scan and store information independently. SqueezeNet replaces a part of 3 × 3 convolution kernels in CNNs with 1 × 1 convolution kernels, decomposes the original one convolution layer into two layers, and encapsulates them into a Fire module. This structure can reduce the parameters of network. Octave Convolution (OctConv) pools some feature maps firstly and stores them separately from the feature maps with the original size. It can reduce spatial redundancy by sharing information between the two groups. In this article, in order to improve the accuracy and efficiency of the network simultaneously, Fire modules of SqueezeNet are used to replace the traditional convolution layers in OctConv to form a new dual neural architecture: OctSqueezeNet. Our experiments, conducted using two well-known LiDAR datasets and several classical state-of-the-art classification methods, revealed that our proposed classification approach based on OctSqueezeNet is able to provide competitive advantages in terms of both classification accuracy and computational amount.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891785PMC
http://dx.doi.org/10.3390/s19224927DOI Listing

Publication Analysis

Top Keywords

convolution kernels
12
dual neural
8
neural architecture
8
data classification
8
spatial redundancy
8
feature maps
8
convolution
6
classification
5
architecture combined
4
combined squeezenet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!