Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Light detection and ranging (LiDAR) is a frequently used technique of data acquisition and it is widely used in diverse practical applications. In recent years, deep convolutional neural networks (CNNs) have shown their effectiveness for LiDAR-derived rasterized digital surface models (LiDAR-DSM) data classification. However, many excellent CNNs have too many parameters due to depth and complexity. Meanwhile, traditional CNNs have spatial redundancy because different convolution kernels scan and store information independently. SqueezeNet replaces a part of 3 × 3 convolution kernels in CNNs with 1 × 1 convolution kernels, decomposes the original one convolution layer into two layers, and encapsulates them into a Fire module. This structure can reduce the parameters of network. Octave Convolution (OctConv) pools some feature maps firstly and stores them separately from the feature maps with the original size. It can reduce spatial redundancy by sharing information between the two groups. In this article, in order to improve the accuracy and efficiency of the network simultaneously, Fire modules of SqueezeNet are used to replace the traditional convolution layers in OctConv to form a new dual neural architecture: OctSqueezeNet. Our experiments, conducted using two well-known LiDAR datasets and several classical state-of-the-art classification methods, revealed that our proposed classification approach based on OctSqueezeNet is able to provide competitive advantages in terms of both classification accuracy and computational amount.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891785 | PMC |
http://dx.doi.org/10.3390/s19224927 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!