Circular synthetic aperture radar (CSAR) has a 360° observation capability on the central observation scenario. A typical way to process CSAR imaging is to cut data into small sub-apertures because most targets are only coherent at a very small observation angle. There are many sub-aperture imaging methods after development in recent years. The back-projection algorithm is widely used because it is simple and can be applied to an arbitrary trajectory. Because of the limitation of the Nyquist sampling frequency and influence of the antenna sidelobe, azimuth ambiguity is a phenomenon that may occur in the radar imaging process. The existing researches typically choose the back-projection (BP) imaging area according to the SAR platform flight path and the antenna beam width. The limitation of the CSAR imaging area and its azimuth ambiguity region are rarely analyzed theoretically. This paper focus on the sub-aperture imaging of CSAR, based on the BP algorithm, which derives the relationship of azimuth ambiguity with CSAR parameters such as the pause repeat frequency (PRF), slant range angle, velocity of radar platform, etc. This paper proposes an equation for the calculation of the azimuth ambiguity region and analyzes the limitations, which provides theoretical support for CSAR parameter design, imaging area selection, and azimuth ambiguity analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891759PMC
http://dx.doi.org/10.3390/s19224920DOI Listing

Publication Analysis

Top Keywords

azimuth ambiguity
24
imaging area
16
imaging
8
back-projection algorithm
8
csar imaging
8
sub-aperture imaging
8
ambiguity region
8
ambiguity
6
csar
6
azimuth
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!