Bonding is increasingly being used, and it is an ever-evolving method for creating unbreakable bonds. The strength of adhesive bonds determines, to a significant extent, the possible applications of this technology and is influenced by many factors. In addition to the type of adhesive used, the characteristics of the surface layers play a significant role; therefore, significant attention is paid to their adjustment and modification. Radiation crosslinking is one of the most important methods for modifying polymer properties. Currently, the most frequently used type of radiation for polymer crosslinking is beta minus (β) radiation, which affects not only mechanical but also surface properties, chemical and temperature resistance, and surface layer characteristics of polymers. This study investigated the effect of β radiation on the surface layer properties of low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP) and the effects of surface-layer modification on the ultimate tensile strength of bonded joints. Based on the results, we concluded that β radiation significantly changes the properties of the tested surface layers, increases the surface energy, and improves the adhesiveness of bonds. Consequently, the final strength of the LDPE, HDPE, and PP bonds increases significantly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918195PMC
http://dx.doi.org/10.3390/polym11111863DOI Listing

Publication Analysis

Top Keywords

surface layers
8
surface layer
8
surface
6
radiation
5
beta radiation
4
radiation quality
4
quality bonded
4
bonded joint
4
joint difficult
4
difficult bond
4

Similar Publications

Aluminum alloys have promising characteristics which make them more useful in industrial applications for thermal management and entropy of the fluidic system. Hence, the current research deals with the analysis of entropy and thermal performance of (CHO-HO)/50:50% saturated by (AA7072/AA7076/TiAIV) alloys. Traditional problem modified using enhanced characteristics of ternary alloys and hydrocarbon 50:50% base fluid.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.

View Article and Find Full Text PDF

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Ampere-level reduction of pure nitrate by electron-deficient Ru with K ions repelling effect.

Nat Commun

December 2024

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Electrochemical nitrate reduction reaction offers a sustainable and efficient pathway for ammonia synthesis. Maintaining satisfactory Faradaic efficiency for long-term nitrate reduction under ampere-level current density remains challenging due to the inevitable hydrogen evolution, particularly in pure nitrate solutions. Herein, we present the application of electron deficiency of Ru metals to boost the repelling effect of counter K ions via the electric-field-dependent synergy of interfacial water and cations, and thus largely promote nitrate reduction reaction with a high yield and well-maintained Faradaic efficiency under ampere-level current density.

View Article and Find Full Text PDF

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

Nat Commun

December 2024

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!