Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this research, the continuous physiological changes of zebrafish (Danio rerio) in 0.1 μg/L thallium (Tl) in 15 days were investigated. The results showed that Tl(I) stress had a significant positive linear correlation with zebrafish ammonia nitrogen excretion (ANE) (p < 0.001), and the mean value of ANE in Tl(I) treatment (435 ± 227 mg/kg/h) was approximately 2 times higher than in the control group (239 ± 168 mg/kg/h), which suggested that ANE was suitable for Tl(I) stress assessment. A substantial difference based on oxygen consumption rate (OCR) between the control group (587 ± 112 mg/kg/h) and Tl(I) treatment (260 ± 88 mg/kg/h) with a high significance p < 0.001 could be observed, and the results indicated that Tl(I) played a negative role in OCR of zebrafish. The characteristics of both ANE and OCR changes under slight Tl(I) stress could be reflected by the ammonia quotient (AQ). It was noteworthy that AQ increased rapidly in first 6 h from 0.66 to 4.50, which was 3 times higher than 1.2, indicating rapid increase in both anaerobic energy utilization and protein metabolism in 0.1 μg/L Tl(I) exposure. It is concluded that the physiological changes of zebrafish based on metabolism can be regarded as a sensitive biological indicator of Tl(I) pollution, which could work as a substitute of potassium that disrupts the normal biological metabolism in the process of transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.124974 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!