A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Breakthrough analysis of continuous fixed-bed adsorption of sevoflurane using activated carbons. | LitMetric

Breakthrough analysis of continuous fixed-bed adsorption of sevoflurane using activated carbons.

Chemosphere

Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand. Electronic address:

Published: January 2020

The inhalational anaesthetic agent - sevoflurane is widely employed for the induction and maintenance of surgical anaesthesia. Sevoflurane possesses a high global warming potential that imposes negative impact to the environment. The only way to resolve the issue is to remove sevoflurane from the medical waste gas before it reaches the atmosphere. A continuous adsorption study with a fixed-bed column was conducted using two commercial granular activated carbons (E-GAC and H-GAC), to selectively remove sevoflurane. The effect of bed depth (Z, 5-15 cm), gas flow rate (Q, 0.5-6.0 L/min) and inlet sevoflurane concentration (C, ∼55-700 mg/L) was investigated. E-GAC demonstrated ∼60% higher adsorption capacity than H-GAC under the same operating conditions. Varying the levels of Z, Q and C showed significant differences in the adsorption capacities of E-GAC, whereas only changing the C level had significant differences for H-GAC. Three breakthrough models (Adams-Bohart, Thomas, and Yoon-Nelson) and Bed-depth/service time (BDST) analysis were applied to predict the breakthrough characteristics of the adsorption tests and determine the characteristic parameters of the column. The Yoon-Nelson and Thomas model-predicted breakthrough curves were in good agreement with the experimental values. In the case of the Adams-Bohart model, a low correlation was observed. The predicted breakthrough time (t) based on kinetic constant (k) in BDST analysis showed satisfactory agreement with the measured values. The results suggest the possibility of designing, scaling up and optimising an adsorption system for removing sevoflurane with the aid of the models and BDST analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.124839DOI Listing

Publication Analysis

Top Keywords

bdst analysis
12
activated carbons
8
remove sevoflurane
8
sevoflurane
7
adsorption
6
breakthrough
5
breakthrough analysis
4
analysis continuous
4
continuous fixed-bed
4
fixed-bed adsorption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!