The determination of cytochrome c in the human serum sample is a regular medical investigation performed to assess cancer diseases. Herein, we used interferometric reflectance spectroscopy (IRS) based biosensor for the determination of cytochrome c. For this purpose first, the nanoporous anodic alumina (NAA) was fabricated. Then, the NAA pore walls were functionalized with 3-aminopropyl trimethoxy silane (NAA-NH). Subsequently, the trypsin enzyme was immobilized on the NAA pore walls. The sensing principle of proposed IRS sensor to cytochrome c is based on a change in the intensity of the reflected light to a charge-coupled device (CCD) detector after digesting of cytochrome c by immobilized trypsin enzymes on NAA-NH into the heme-peptide fragment. The heme-peptide fragment then oxidized 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) to green color ABTS anion radical in the presence of hydrogen peroxide. The generated green color ABTS anion radical solution adsorbed the white light and therefore the intensity of the reflected light from NAA to the CCD decreased. The decrease in the intensity of the white light had a logarithmic relationship with the concentration of the cytochrome c in the range of 1-100 nM. The limit of detections (LOD) for cytochrome c was 0.5 nM. The proposed biosensor exhibited high selectivity, sensitivity, and good stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2019.111828 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!