A novel framework for the cell-free enzymatic production of glucaric acid.

Metab Eng

Department of Molecular Sciences, Macquarie University, Sydney, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia. Electronic address:

Published: January 2020

Glucaric acid (GlucA) is a valuable glucose-derived chemical with promising applications as a biodegradable and biocompatible chemical in the manufacturing of plastics, detergents and drugs. Recently, there has been a significant focus on producing GlucA microbially (in vivo) from renewable materials such as glucose, sucrose and myo-inositol. However, these in vivo GlucA production processes generally lack efficiency due to toxicity problems, metabolite competition and suboptimal enzyme ratios. Synthetic biology and accompanying cell-free biocatalysis have been proposed as a viable approach to overcome many of these limitations. However, cell-free biocatalysis faces its own limitations for industrial applications due to high enzyme costs and cofactor consumption. We have constructed a cell-free GlucA pathway and demonstrated a novel framework to overcome limitations of cell-free biocatalysis by i) the combination of both thermostable and mesophilic enzymes, ii) incorporation of a cofactor regeneration system and iii) immobilisation and recycling of the pathway enzymes. The cell-free production of GlucA was achieved from glucose-1-phosphate with a titre of 14.1 ± 0.9 mM (3.0 ± 0.2 g l) and a molar yield of 35.2 ± 2.3% using non-immobilised enzymes, and a titre of 8.1 ± 0.2 mM (1.70 ± 0.04 g l) and a molar yield of 20.2 ± 0.5% using immobilised enzymes with a total reaction time of 10 h. The resulting productivities (0.30 ± 0.02 g/h/l for free enzymes and 0.170 ± 0.004 g/h/l for immobilised enzymes) are the highest productivities so far reported for glucaric acid production using a synthetic enzyme pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2019.11.003DOI Listing

Publication Analysis

Top Keywords

glucaric acid
12
cell-free biocatalysis
12
novel framework
8
overcome limitations
8
limitations cell-free
8
molar yield
8
immobilised enzymes
8
cell-free
6
enzymes
6
gluca
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!