Necrotic enteritis (NE) is a multifactorial disease in broiler that is caused by colonization of Clostridium perfringens in their gastrointestinal tract. Recently several immunogenic proteins from virulent C. perfringens have been considered as vaccines to provide protection against NE. In this study, a novel trivalent fusion protein including immunogenic epitopes of three virulence factors of, NetB, alpha toxin and a metallopeptidase protein (NAM) was designed using in silico studies. Circular dichroism spectra was applied for determination of secondary structure and folding properties of the purified recombinant NAM (rNAM) expressed in E. coli. The antigenicity of rNAM was confirmed by induction of immune response in rabbit and neutralization experiments of the toxins in cell culture studies. To this end, anti-rNAM antisera neutralized the crude toxins produced by a wild type virulent C. perfringens strain using chicken hepatocellular carcinoma (LMH) cell lines. The cells were exposed to a mixture of anti-rNAM antisera and 2 × LD50 doses of the toxins. The result showed 94% viability of the cells against the crude toxins, in the presence of anti-rNAM antisera. Our study suggests that combination of metallopeptidase protein along with alpha toxin and NetB toxins is a potent immunogen which is able to neutralize the toxicity of crude extracellular toxins. The recombinant chimeric NAM could be a suitable and effective subunit vaccine candidate to prevent NE disease caused by C. perfringens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.09.227 | DOI Listing |
Int J Biol Macromol
March 2020
Department of Molecular Biology, Pasteur Institute of Iran, Iran.
Necrotic enteritis (NE) is a multifactorial disease in broiler that is caused by colonization of Clostridium perfringens in their gastrointestinal tract. Recently several immunogenic proteins from virulent C. perfringens have been considered as vaccines to provide protection against NE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!