Flavonoid natural products are well known for their beneficial antimicrobial, antitumor, and anti-inflammatory properties, however, some of these natural products often are rhamnosylated, which severely limits their bioavailability. The lack of endogenous rhamnosidases in the human GI tract not only prevents many of these glycosylated compounds from being of value in functional foods but also limits the modification of natural product libraries being tested for drug discovery. RHA-P is a catalytically efficient, thermostable α-l-rhamnosidase from the marine bacterium Novosphingobium sp. PP1Y that selectively hydrolyzes α-1,6 and α-1,2 glycosidic linkages between a terminal rhamnose and a flavonoid moiety. This work reports the 2.2 Å resolution crystal structure of RHA-P, which is an essential step forward in the characterization of RHA-P as a potential catalyst to increase the bioavailability of rhamnosylated natural compounds. The structure shows highly conserved rhamnose- and calcium-binding residues in a shallow active site that is housed in the (β/α) domain. In comparison to BT0986 (pdbID: 5MQN), the only known structure of an RHA-P homolog, the morphology, electrostatic potentials and amino acid composition of the substrate binding pocket are significantly different, offering insight into the substrate preference of RHA-P for glycosylated aryl compounds such as hesperidin, naringin, rutin, and quercitrin, over polysaccharides, which are preferred by BT0986. These preferences were further explored by using in silico docking, the results of which are consistent with the known kinetic data for RHA-P acting on different rhamnosylated flavonoids. Due to its promiscuity, relative thermostability compared to other known rhamnosidases, and catalytic efficiency even in significant concentrations of organic solvents, RHA-P continues to show potential for biocatalytic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2019.108189DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
insight substrate
8
rha-p
8
novosphingobium pp1y
8
natural products
8
structure rha-p
8
structure insight
4
substrate specificity
4
specificity α-l
4
α-l rhamnosidase
4

Similar Publications

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

A new series of 13 ritonavir-like inhibitors of human drug-metabolizing CYP3A4 was rationally designed to study the R side-group and R end-group interplay when the R side-group is represented by phenyl. Spectral, functional, and structural characterization showed no improvement in the binding affinity and inhibitory potency of R/R-phenyl inhibitors upon elongation and/or fluorination of R-Boc (tert-butyloxycarbonyl) or its replacement with benzenesulfonyl. When R is pyridine, the impact of R-phenyl-to-indole/naphthalene substitution was multidirectional and highly dependent on side-group stereo configuration.

View Article and Find Full Text PDF

The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques.

View Article and Find Full Text PDF

Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.

View Article and Find Full Text PDF

The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!