Phenotypic measurements and images of crops grown under controlled-environment conditions can be analyzed to compare plant growth and other phenotypes from diverse varieties. Those demonstrating the most favorable phenotypic traits can then be used for crop improvement strategies. This article details a protocol for image-based root and shoot phenotyping of plants grown in the greenhouse to compare traits among different varieties. Diverse maize lines were grown in the greenhouse in large 8-gallon treepots in a clay granule substrate. Replicates of each line were harvested at 4 weeks, 6 weeks, and 8 weeks after planting to capture developmental information. Whole-plant phenotypes include biomass accumulation, ontogeny, architecture, and photosynthetic efficiency of leaves. Image analysis was used to measure leaf surface area and tassel size and to extract shape variance information from complex 3D root architectures. Notably, this framework is extensible to any number of above- or below-ground phenotypes, both morphological and physiological. © 2017 by John Wiley & Sons, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cppb.20044DOI Listing

Publication Analysis

Top Keywords

grown greenhouse
8
weeks weeks
8
whole-plant manual
4
manual image-based
4
image-based phenotyping
4
phenotyping controlled
4
controlled environments
4
environments phenotypic
4
phenotypic measurements
4
measurements images
4

Similar Publications

Gas chromatography-mass spectrometry metabolic profiling and sensory evaluation of greenhouse mangoes (Mangifera indica L. 'Irwin') over multiple harvest seasons.

J Biosci Bioeng

January 2025

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Analytical Innovation Research Laboratory, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address:

Compared to outdoor mango cultivation in the tropics, greenhouse cultivation in temperate regions is less reported due to its short history and small scale. Here, we evaluated for the first time the taste-focused quality of greenhouse-grown mangoes (Irwin) by GC-MS metabolic profiling and sensory evaluation for over three years (2021-2023). The relative standard deviation in sensory evaluation scores was approximately 15 % each year.

View Article and Find Full Text PDF

First report of causing black foot on walnut in Chile.

Plant Dis

January 2025

Universidad de Chile, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronomicas, Casilla 1004, Santiago, Chile, 8820000;

Walnut (Juglans regia L.) is the primary nut tree cultivated in Chile, covering 44.626 ha.

View Article and Find Full Text PDF

Occurrence of AG-5 Causing Root Rot on in Northwestern China.

Plant Dis

January 2025

Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China;

Astragalus mongholicus is a perennial Chinese medicinal herb in the family Leguminosae widely cultivated in China. In September 2023, A. mongholicus plants in a field in Weiyuan County, Gansu Province, showed symptoms of circular or irregular brown, sunken and necrotic lesions, multiple lesions coalesced, and brown longitudinal cracks in the roots.

View Article and Find Full Text PDF

Plant growth promotion via priming with volatile organic compounds emitted from strain EXTN-1.

Front Microbiol

January 2025

Research Institute of International Agriculture, Technology and Information, Hankyong National University, Anseong-si, Republic of Korea.

Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain (EXTN-1) on tobacco plant growth is dependent on the culture media used.

View Article and Find Full Text PDF

There is a growing need for sustainable, efficient methods to promote plant growth and protect crops, with plant extracts offering natural, multi-component solutions. Based on previous observations, , , and were selected from 17 water extracts to investigate how the application times of soil sprays affect the antioxidant enzymes and secondary metabolites in fruity and leafy vegetables at different growth stages. From 1 week after sowing (WAS) to 4 WAS, all applications increased the shoot fresh weight by 42-69% in cucumbers, 40-64% in tomatoes, 46-65% in kale and 42-63% in lettuce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!