Interleukin (IL)-22 is recognized as a tumor-supporting cytokine and is implicated in the proliferation of multiple epithelial cancers. In breast cancer, the current knowledge of IL-22 function is based on cell line models and little is known about how IL-22 affects the tumor initiation, proliferation, invasion, and metastasis in the in vivo system. Here, we investigated the tumor stage-specific function of IL-22 in disease development by evaluating the stage-by-stage progression of breast cancer in an IL-22 knockout spontaneous breast cancer mouse model. We found that among all the stages, IL-22 is specifically upregulated in tumor microenvironment (TME) during the malignant transformation stage of breast tumor progression. The deletion of IL-22 gene leads to the arrest of malignant transition stage, and reduced invasion and tumor burden. Administration of recombinant IL-22 in the TME does not influence in vivo tumor initiation and proliferation but only promotes malignant transformation of cancer cells. Mechanistically, deletion of IL-22 gene causes downregulation of epithelial-to-mesenchymal transition (EMT)-associated transcription factors in breast tumors, suggesting EMT as the mechanism of regulation of malignancy by IL-22. Clinically, in human breast tumor tissues, increased number of IL-22 cells in the TME is associated with an aggressive phenotype of breast cancer. For the first time, this study provides an insight into the tumor stage-specific function of IL-22 in breast tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944104 | PMC |
http://dx.doi.org/10.1002/1878-0261.12598 | DOI Listing |
Alzheimers Dement
December 2024
B.S.A. College of Engineering and Technology, Mathura, Uttar Pradesh, India.
Background: Cognitive dysfunction emerges as a manifestation of reduced estrogen levels following ovariectomy in an individual. However, the conventional use of estrogen replacement therapy could increase the risk of breast cancer and thromboembolism. Icariin is a natural compound that has been reported to be a neuroprotective agent against dementia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.
Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.
View Article and Find Full Text PDFBioconjug Chem
January 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.
View Article and Find Full Text PDFANZ J Surg
December 2024
Northern Sydney Cancer Centre, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia.
Curr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!