Background: Drug-drug interactions (DDIs) are one of the most common drug-related problems. Recently, electronic databases have drug interaction tools to search for potential DDIs, for example, Micromedex and Drugs.com. However, Micromedex and Drugs.com have different abilities in detecting potential DDIs, and this might cause misinformation to occur between patients and health care providers.
Methods And Findings: The aim of this study was to compare the ability of Micromedex and Drugs.com to detect potential DDIs with metabolic syndrome medications using the drug list from the U-central database, King Chulalongkorn Memorial Hospital in April 2019. There were 90 available drugs for the treatment of the metabolic syndrome and its associated complications, but six were not found in the Micromedex and Drugs.com databases; therefore, only 84 items were used in the present study. There were 1,285 potential DDI pairs found by the two databases. Micromedex reported DDIs of 724 pairs, while, Drugs.com reported 1,122 pairs. For the severity of the potential DDI reports, the same severity occurred between the two databases of 481 pairs (37.43%) and a different severity for 804 pairs (62.57%).
Conclusion: Drugs.com had a higher sensitivity to detect potential DDIs by approximately 1.5-fold, but Micromedex supplied more informative documentation for the severity classification. Therefore, pharmacists should use at least two databases to evaluate potential DDIs and determine the appropriate drug regimens for physician communications and patient consultations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855424 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225239 | PLOS |
Acta Pharm
December 2024
Department of Clinical Pharmacy, University Hospital Dubrava, 10000 Zagreb Croatia.
Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity globally. It is estimated that 17.9 million people died from CVDs in 2019, which represents 32 % of all deaths worldwide.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
January 2025
Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
P-glycoprotein (P-gp) is a key efflux transporter and may be involved in drug-drug interactions (DDIs) at the blood-brain barrier (BBB), which could lead to changes in central nervous system (CNS) drug exposure. Morphine is a P-gp substrate and therefore a potential victim drug for P-gp mediated DDIs. It is however unclear if P-gp inhibitors can induce clinically relevant changes in morphine CNS exposure.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E Spokane Falls Blvd., Spokane, WA 99202, USA.
Morphine is a commonly prescribed opioid analgesic used to treat chronic pain. Morphine undergoes glucuronidation by UDP-glucuronosyltransferase (UGT) 2B7 to form morphine-3-glucuronide and morphine-6-glucuronide. Morphine is the gold standard for chronic pain management and has a narrow therapeutic index.
View Article and Find Full Text PDFInfect Chemother
December 2024
Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Korea.
Background: The life expectancy of people living with human immunodeficiency virus (PLWH) has significantly improved with advancements in antiretroviral therapy (ART). However, aging PLWH face a growing burden of non-communicable diseases (NCDs), polypharmacy, and drug-drug interactions (DDIs), which pose challenges in their management. This study investigates the prevalence of NCDs, polypharmacy, and DDIs among PLWH aged ≥50 years in Korea and their impact on quality of life (QOL).
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States.
assessment of the potential of compounds to affect drug metabolizing enzymes and transporters and perpetrate drug-drug interactions (DDIs) is a common practice in drug research. For the development phase, regulators define an exhaustive list of enzymes and transporters to consider, but DDIs associated with many of these are minor and can be well-managed in the clinic; thus, progression of drug candidates that address unmet medical needs should not be curtailed due to this property. However, some enzymes and transporters are very important in drug disposition, so it is important to avoid/reduce inhibition or induction of these through drug design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!