In insects, 20-hydroxyecdysone (20E) and insulin-like growth factor-like peptides (IGFLPs) regulate the development of imaginal discs. However, how IGFLPs are up-regulated to impact the development of the pupal wing disc is still unclear. In this study, we investigated the expression regulation of IGFLP in the pupal wing disc of silkworm, Bombyx mori. We confirmed that B. mori IGFLP (BmIGFLP) was mainly expressed in the pupal wing disc and the expression of BmIGFLP could be significantly induced by 20E. Bioinformatics analysis of BmIGFLP promoter sequence revealed three cis-regulation elements (CREs) of signal transducer and activator of transcription (STAT), which is a key component in the Janus-activated kinase / STAT pathway. Luciferase activity assays showed that two CREs enhanced the transcriptional activity of BmIGFLP. Electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that BmSTAT proteins in the nuclear extracts of B. mori pupal wing discs and BmN cells could only bind to the STAT CRE3, indicating that STAT CRE3 activated by BmSTAT enhances BmIGFLP expression at pupal stages. Although 20E could not enhance the expression of BmSTAT, 20E enhanced the nucleus translocation of BmSTAT to bind with the STAT CRE3 in the BmIGFLP promoter. The increase of transcriptional activity of the STAT CRE3 by overexpression of BmSTAT and addition of 20E in BmN cells confirmed this result. Taken together, all data indicate that BmSTAT is one of the transcription factors activating 20E-induced BmIGFLP expression in the pupal wing disc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1744-7917.12736 | DOI Listing |
Cells Dev
January 2025
Tunicate Laboratory, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan.
Butterfly wing eyespots are developmentally determined at the early pupal stage, when prospective eyespot focal cells underneath the pupal cuticle focal spot function as eyespot organizers in the pupal wing tissue. Here, we performed light microscopy and transmission electron microscopy (TEM) to describe cellular structures of pupal wing tissue with an eyespot organizer immediately after pupation using the Blue Pansy butterfly Junonia orithya. The pupal forewing dorsal epidermis was a pseudostratified monolayer of vertically elongated epidermal cells.
View Article and Find Full Text PDFCurr Biol
December 2024
School of Biosciences, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK. Electronic address:
During tissue morphogenesis, an interplay of biochemical pathways and mechanical cues regulates polarized cell behaviors, the balance of which leads to tissues reaching their correct shape and size. A well-studied example of a biochemical regulator is the highly conserved Fat-Dachsous (Ft-Ds) pathway that coordinates planar polarized cell behaviors and growth in epithelial tissues. For instance, in the Drosophila larval wing disc, the Ft-Ds pathway acts via the atypical myosin Dachs to control tissue shape by promoting the orientation of cell divisions primarily in a proximodistal (PD) direction.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Institute of Evolutionary Biology, Spanish National Research Council (CSIC)-Universitat Pompeu Fabra, Barcelona 08003, Spain.
In , successful development relies on the precise coordination of both spatial and temporal regulatory axes. The temporal axis governs stage-specific identity and developmental transitions through a number of genes, collectively forming the . Among these, Ecdysone inducible protein 93F (E93) serves as the critical determinant for adult specification, but its mechanism of action remains unclear.
View Article and Find Full Text PDFNat Commun
December 2024
Aix-Marseille University, CNRS, IUSTI & Turing Centre for Living Systems (CENTURI), Marseille, France.
During their final transformation, insects emerge from the pupal case and deploy their wings within minutes. The wings deploy from a compact origami structure, to form a planar and rigid blade that allows the insect to fly. Deployment is powered by a rapid increase in internal pressure, and by the subsequent flow of hemolymph into the deployable wing structure.
View Article and Find Full Text PDFFront Physiol
November 2024
Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!