To obtain stable outcomes in regenerative medicine, the quality of cells for transplantation is of great importance. Cellular stress potentially results in the release of damage-associated molecular patterns (DAMPs) and activates immunological responses, affecting the outcome of transplanted tissue. In this study, we intentionally prepared necrotic chondrocytes that would gradually die and release DAMPs and investigated how the maturation of tissue-engineered cartilage was affected. Necrotic chondrocytes were prepared by a conventional heat-treatment method, by which their viability started to decrease after 24 h. When tissue-engineered cartilage containing necrotic chondrocytes was subcutaneously transplanted into C57BL/6J mice, accumulation of cartilage matrix was decreased compared to the control. Meanwhile, immunohistochemical staining demonstrated that localization of macrophages and neutrophils was more apparent in the constructs of necrotic chondrocytes, suggesting that DAMPs from necrotic chondrocytes could prompt migration of more immune cells. Two-dimensional electrophoresis and mass spectrometry identified prelamin as a significant biomolecule released from necrotic chondrocytes. Also, when prelamin was added to a culture of RAW264, and were increased in accordance with the content of added prelamin. It was suggested that DAMPs from dying chondrocytes could induce inflammatory properties in surrounding macrophages, impairing the maturation of tissue-engineered cartilage. In conclusion, maturation of tissue-engineered cartilage was hampered when less viable chondrocytes releasing DAMPs were included. Impact statement In regenerative medicine, the quality of cells is of great importance to secure clinical safety. During culture, damage of cells could occur, if not critical enough to cause immediate cell death, but still inducing a less viable status. Damage-associated molecular patterns (DAMPs) are released from necrotic cells, but their influence in regenerative medicine has yet to be clarified. In this study, we elucidated how DAMPs from chondrocytes could affect the maturation of tissue-engineered cartilage. Also, possible DAMPs from necrotic chondrocytes were comprehensively analyzed, and prelamin was identified as a significant molecule, which may serve for detecting the existence of necrotic chondrocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2019.0185DOI Listing

Publication Analysis

Top Keywords

necrotic chondrocytes
32
tissue-engineered cartilage
24
maturation tissue-engineered
16
damage-associated molecular
12
molecular patterns
12
chondrocytes
12
regenerative medicine
12
necrotic
9
medicine quality
8
quality cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!