In order for entomopathogenic fungi to colonize an insect host, they must first attach to, and penetrate, the cuticle layers of the integument. Herein, we explored the interactions between the fungal pathogen ARSEF 4556 and two immunologically distinct morphs, melanic (M) and non-melanic (NM), of the greater wax moth . We first interrogated the cuticular compositions of both insect morphs to reveal substantial differences in their physiochemical properties. Enhanced melanin accumulation, fewer hydrocarbons, and higher -dihydroxyphenylalanine (DOPA) decarboxylase activity were evident in the cuticle of the M larvae. This "hostile" terrain proved challenging for reflected in poor conidial attachment and germination, and elevated expression of stress-associated genes (). Lack of adherence to the cuticle impacted negatively on the speed of kill and overall host mortality; a dose of 10 conidia killed ~30% of M larvae over a 12-day period, whereas a 100-fold lower dose (10 conidia) achieved a similar result for NM larvae. Candidate gene expression patterns between the insect morphs indicated that M larvae are primed to "switch-on" immunity-associated genes (e.g., phenoloxidase) within 6-12 h of conidia exposure and can sustain a "defense" response. Critically, responds to the distinct physiochemical cues of both hosts and adjusts the expression of pathogenicity-related genes accordingly (e.g., ). We reveal previously uncharacterized mechanisms of attack and defence in fungal-insect antibiosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647853PMC
http://dx.doi.org/10.1080/21505594.2019.1693230DOI Listing

Publication Analysis

Top Keywords

insect morphs
8
dose conidia
8
infection dynamics
4
dynamics differ
4
cuticle
4
differ cuticle
4
cuticle interface
4
interface susceptible
4
susceptible tolerant
4
morphs
4

Similar Publications

Molecular Phylogenetics and Estimation of Evolutionary Divergence and Biogeography of the Family Cordycipitaceae (Ascomycota, Hypocreales).

J Fungi (Basel)

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The Cordycipitaceae family of insecticidal fungi is widely distributed in nature, is the most complex in the order Hypocreales (Ascomycota), with members displaying a diversity of morphological characteristics and insect host ranges. Based on Bayesian evolutionary analysis of five genomic loci(the small subunit of ribosomal RNA (SSU) gene, the large subunit of ribosomal RNA (LSU) gene, the translation elongation factor 1-α () gene, the largest subunit of RNA polymerase II (), and the second largest subunit of RNA polymerase II (), we inferred the divergence times for members of the Cordycipitaceae, improving the internal phylogeny of this fungal family. Molecular clock analyses indicate that the ancestor of occurred in the Paleogene period (34.

View Article and Find Full Text PDF

Transgenerational Plasticity of Maternal Hemolymph Trehalose in Aphids.

Arch Insect Biochem Physiol

January 2025

College of Agriculture, Ibaraki University, Inashiki, Japan.

Aphids exhibit a unique reproductive strategy known as pseudoplacental viviparity, in which embryos develop internally and are thought to receive nutrients such as sugars and amino acids directly from the maternal hemolymph through an ovariole sheath, bypassing the need for traditional yolk storage. This system enables viviparous aphids to adapt to diverse and potentially stressful environments by transmitting maternal environmental cues that influence transgenerational plasticity. However, the mechanisms underlying this nutrient-mediated plasticity are poorly understood.

View Article and Find Full Text PDF

Social insects form complex societies with division of labour between different female castes. In most species, a single queen heads the colony; in others, several queens share the task of reproduction. These different social organisations are often associated with distinct queen morphologies and life-history strategies and occur in different environments.

View Article and Find Full Text PDF

Differential genome-wide expression profiles in response to high temperatures in the two body-color morphs of the pea aphid.

Int J Biol Macromol

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, National Demonstration Center for Experimental Grassland Science Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China. Electronic address:

Global warming and extremely high temperatures affect insect survival and distribution. In this study, we characterized the gene expression profiles of red (PAR) and green (PAG) morphs of the pea aphid (Acyrthosiphon pisum) at three high temperatures (30 °C, 36 °C, and 38 °C) and three treatment durations (6 h, 12 h, and 24 h) by high-throughput sequencing. Both PARs and PAGs increased the number of significantly differentially expressed genes as temperature and treatment duration increased, particularly for genes associated with stress resistance, lipid metabolism, cuticular protein expression, and the initiation of various regulatory mechanisms.

View Article and Find Full Text PDF

(partridgeberry; family Rubiaceae) is a creeping, understory plant native to eastern North America. The twinned, tubular flowers of this distylous plant are bright white and produce volatile organic compounds (VOCs). Partridgeberry has intermorph incompatibility and thus requires pollinators to move pollen from one morph to the other.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!