Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose Among the components of the central nervous system, the optic nerve and the brainstem are considered to be the eloquent structures that are sensitive to stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT). SRS or SRT with fractionation in areas adjacent to these tissues is both promising and challenging. Materials and methods To clarify the precise dose distribution achievable with fractionation in and around the optic nerve and brainstem, theoretical simulations were performed, based on the biological effective dose (BED). Results These simulations clearly showed that the doses to the optic nerve and brainstem can be adjusted using fractionation, meaning that the prescribed doses to the surrounding brain tissue can be reduced. Conversely doses to the lesions themselves can be increased by fractionation, while maintaining a stable dose to normal optic nerve and brainstem tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837262 | PMC |
http://dx.doi.org/10.7759/cureus.6087 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!