Structures of GapR reveal a central channel which could accommodate B-DNA.

Sci Rep

Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.

Published: November 2019

GapR is a nucleoid-associated protein required for the cell cycle of Caulobacter cresentus. We have determined new crystal structures of GapR to high resolution. As in a recently published structure, a GapR monomer folds into one long N-terminal α helix and two shorter α helices, and assembles into a tetrameric ring with a closed, positively charged, central channel. In contrast to the conclusions drawn from the published structures, we observe that the central channel of the tetramer presented here could freely accommodate B-DNA. Mutation of six conserved lysine residues lining the cavity and electrophoretic mobility gel shift experiments confirmed their role in DNA binding and the channel as the site of DNA binding. Although present in our crystals, DNA could not be observed in the electron density maps, suggesting that DNA binding is non-specific, which could be important for tetramer-ring translocation along the chromosome. In conjunction with previous GapR structures we propose a model for DNA binding and translocation that explains key published observations on GapR and its biological functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853979PMC
http://dx.doi.org/10.1038/s41598-019-52964-2DOI Listing

Publication Analysis

Top Keywords

dna binding
16
central channel
12
structures gapr
8
accommodate b-dna
8
gapr
5
dna
5
structures
4
gapr reveal
4
reveal central
4
channel
4

Similar Publications

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!