Band splitting with vanishing spin polarizations in noncentrosymmetric crystals.

Nat Commun

Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China.

Published: November 2019

The Dresselhaus and Rashba effects are well-known phenomena in solid-state physics, in which spin-orbit coupling splits spin-up and spin-down energy bands of nonmagnetic non-centrosymmetric crystals. Here, we discuss a phenomenon we dub band splitting with vanishing spin polarizations (BSVSP), in which, as usual, spin-orbit coupling splits the energy bands in nonmagnetic non-centrosymmetric systems. Surprisingly, however, both split bands show no net spin polarization along certain high-symmetry lines in the Brillouin zone. In order to rationalize this phenomenon, we propose a classification of point groups into pseudo-polar and non-pseudo-polar groups. By means of first-principles simulations, we demonstrate that BSVSP can take place in both symmorphic (e.g., bulk GaAs) and non-symmorphic systems (e.g., two dimensional ferroelectric SnTe). Furthermore, we identify a linear magnetoelectric coupling in reciprocal space, which could be employed to tune the spin polarization with an external electric field. The BSVSP effect and its manipulation could therefore form the basis for future spintronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854082PMC
http://dx.doi.org/10.1038/s41467-019-13197-zDOI Listing

Publication Analysis

Top Keywords

band splitting
8
splitting vanishing
8
vanishing spin
8
spin polarizations
8
spin-orbit coupling
8
coupling splits
8
energy bands
8
bands nonmagnetic
8
nonmagnetic non-centrosymmetric
8
spin polarization
8

Similar Publications

Electrochemical water splitting, which encompasses the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers a promising route for sustainable hydrogen production. The development of efficient and cost-effective electrocatalysts is crucial for advancing this technology, especially given the reliance on expensive transition metals, such as Pt and Ir, in traditional catalysts. This review highlights recent advances in the design and optimization of electrocatalysts, focusing on density functional theory (DFT) as a key tool for understanding and improving catalytic performance in the HER and OER.

View Article and Find Full Text PDF

Theoretical Design for Thorium-Containing Two-Dimensional Materials.

Inorg Chem

January 2025

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China.

Actinide elements are characterized by their unique electronic correlations, variable valence states, and localized 5f electrons, leading to unconventional electronic and topological properties in their compounds. The distinctive physical properties of actinide materials are maintained in low-dimensional forms, yet two-dimensional (2D) actinide materials remain largely unexplored due to their scarcity and the experimental challenges posed by their radioactivity. To fill the knowledge gap in 2D actinide materials, we theoretically designed a series of stable thorium-containing 2D materials, including MXenes, chalcogenides, halides, and other compounds with unique structures.

View Article and Find Full Text PDF

Semiconducting Overoxidized Polypyrrole Nano-Particles for Photocatalytic Water Splitting.

Small

January 2025

UMR 8182, CNRS, Institut de Chimie Moléculaires et des Matériaux d'Orsay, Université Paris-Saclay, Orsay, 91405, France.

Capturing sunlight to fuel the water splitting reaction (WSR) into O and H is the leitmotif of the research around artificial photosynthesis. Organic semiconductors have now joined the quorum of materials currently dominated by inorganic oxides, where for both families of compounds the bandgaps and energies can be adjusted synthetically to perform the Water Splitting Reaction. However, elaborated and tedious synthetic pathways are necessary to optimize the photophysical properties of organic semiconductors.

View Article and Find Full Text PDF

Objective: To analyze the effectiveness of three internal fixation methods, namely hollow screw combined with Kirschner wire tension band, hollow screw combined with anchor nail, and modified 1/3 tubular steel plate, in the treatment of avulsion fracture of tibial tubercle (AFTT) in adolescents.

Methods: Between January 2018 and September 2023, 19 adolescent AFTT patients who met the selection criteria were admitted. According to different internal fixation methods, patients were divided into group A (8 cases, hollow screw combined with Kirschner wire tension band), group B (6 cases, hollow screw combined with anchor nail), and group C (5 cases, modified 1/3 tubular steel plate).

View Article and Find Full Text PDF

Background: Limited data are available on the global rates of paediatric multiple sclerosis. Here, we report on the estimated worldwide prevalence of paediatric MS.

Methods: We included paediatric prevalence data in 2020-2022 (Multiple Sclerosis International Federation Atlas of MS) and the prevalence of child neurologists (International Child Neurology Association).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!