If the genome contains outlier sequences extraordinarily sensitive to environmental agents, these would be sentinels for monitoring personal carcinogen exposure and might drive direct changes in cell physiology rather than acting through rare mutations. New methods, adductSeq and freqSeq, provided statistical resolution to quantify rare lesions at single-base resolution across the genome. Primary human melanocytes, but not fibroblasts, carried spontaneous apurinic sites and TG sequence lesions more frequent than ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs). UV exposure revealed hyperhotspots acquiring CPDs up to 170-fold more frequently than the genomic average; these sites were more prevalent in melanocytes. Hyperhotspots were disproportionately located near genes, particularly for RNA-binding proteins, with the most-recurrent hyperhotspots at a fixed position within 2 motifs. One motif occurs at ETS family transcription factor binding sites, known to be UV targets and now shown to be among the most sensitive in the genome, and at sites of mTOR/5' terminal oligopyrimidine-tract translation regulation. The second occurs at ATTCTY, which developed "dark CPDs" long after UV exposure, repaired CPDs slowly, and had accumulated CPDs prior to the experiment. Motif locations active as hyperhotspots differed between cell types. Melanocyte CPD hyperhotspots aligned precisely with recurrent UV signature mutations in individual gene promoters of melanomas and with known cancer drivers. At sunburn levels of UV exposure, every cell would have a hyperhotspot CPD in each of the ∼20 targeted cell pathways, letting hyperhotspots act as epigenetic marks that create phenome instability; high prevalence favors cooccurring mutations, which would allow tumor evolution to use weak drivers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883822 | PMC |
http://dx.doi.org/10.1073/pnas.1907860116 | DOI Listing |
Carcinogen-induced mutations are thought near-random, with rare cancer-driver mutations underlying clonal expansion. Using high-fidelity Duplex Sequencing to reach a mutation frequency sensitivity of 4×10 per nt, we report that sun exposure creates pervasive mutations at sites with ∼100-fold UV-sensitivity in RNA-processing gene promoters - cyclobutane pyrimidine dimer (CPD) hyperhotspots - and these mutations have a mini-driver clonal expansion phenotype. Numerically, human skin harbored 10-fold more genuine mutations than previously reported, with neonatal skin containing 90,000 per cell; UV signature mutations increased 8,000-fold in sun-exposed skin, averaging 3×10 per nt.
View Article and Find Full Text PDFPhotochem Photobiol
September 2022
Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT.
The dominant DNA damage generated by UV exposure is the cyclobutane pyrimidine dimer (CPD), which alters skin cell physiology and induces cell death and mutation. Genome-wide nucleotide-resolution analysis of CPDs in melanocytes and fibroblasts has identified "CPD hyperhotspots", pyrimidine-pyrimidine sites hundreds of fold more susceptible to the generation of CPDs than the genomic average. Identifying hyperhotspots in keratinocytes could enable measuring individual past UV exposure in small skin samples and predicting future skin cancer risk.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2019
Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040;
If the genome contains outlier sequences extraordinarily sensitive to environmental agents, these would be sentinels for monitoring personal carcinogen exposure and might drive direct changes in cell physiology rather than acting through rare mutations. New methods, adductSeq and freqSeq, provided statistical resolution to quantify rare lesions at single-base resolution across the genome. Primary human melanocytes, but not fibroblasts, carried spontaneous apurinic sites and TG sequence lesions more frequent than ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!