A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An updated matrix to predict rapid radiographic progression of early rheumatoid arthritis patients: pooled analyses from several databases. | LitMetric

Objective: In early RA, some patients exhibit rapid radiographic progression (RRP) after one year, associated with poor functional prognosis. Matrices predicting this risk have been proposed, lacking precision or inadequately calibrated. We developed a matrix to predict RRP with high precision and adequate calibration.

Methods: Post-hoc analysis by pooling individual data from cohorts (ESPOIR and Leuven cohorts) and clinical trials (ASPIRE, BeSt and SWEFOT trials). Adult DMARD-naïve patients with active early RA for which the first therapeutic strategy after inclusion was to prescribe methotrexate or leflunomide were included. A logistic regression model to predict RRP was built. The best model was selected by 10-fold stratified cross-validation by maximizing the Area Under the Curve. Calibration and discriminatory power of the model were checked. The probabilities of RRP for each combination of levels of baseline characteristics were estimated.

Results: 1306 patients were pooled. 20.6% exhibited RRP. Four predictors were retained: rheumatoid factor positivity, presence of at least one RA erosion on X-rays, CRP > 30mg/l, number of swollen joints. The matrix estimates RRP probability for 36 combinations of level of baseline characteristics with a greatly enhanced precision compared with previously published matrices (95% CI: from ± 0.02 minimum to ± 0.08 maximum) and model calibration is excellent (P = 0.79).

Conclusion: A matrix proposing RRP probability with high precision and excellent calibration in early RA was built. Although the matrix has moderate sensitivity and specificity, it is easily usable and may help physicians and patients to make treatment decisions in daily clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rheumatology/kez542DOI Listing

Publication Analysis

Top Keywords

matrix predict
8
rapid radiographic
8
radiographic progression
8
patients pooled
8
predict rrp
8
high precision
8
baseline characteristics
8
rrp probability
8
rrp
7
patients
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!